Zephyrnet Logo

Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy

Date:

  • 1.

    Moscow, J. A., Fojo, T. & Schilsky, R. L. The evidence framework for precision cancer medicine. Nat. Rev. Clin. Oncol. 15, 183–192 (2018).

    Article  Google Scholar 

  • 2.

    Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  Article  Google Scholar 

  • 3.

    Litière, S., Collette, S., de Vries, E. G., Seymour, L. & Bogaerts, J. RECIST—learning from the past to build the future. Nat. Rev. Clin. Oncol. 14, 187–192 (2017).

    Article  CAS  Google Scholar 

  • 4.

    Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    CAS  Article  Google Scholar 

  • 5.

    Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Sci. Transl. Med. 7, 284ra57 (2015).

    Article  Google Scholar 

  • 6.

    Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  CAS  Google Scholar 

  • 7.

    Jones, L. H. & Neubert, H. Clinical chemoproteomics—opportunities and obstacles. Sci. Transl. Med. 9, eaaf7951 (2017).

    Article  Google Scholar 

  • 8.

    Gerry, C. J. & Schreiber, S. L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov. 17, 333–352 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Shao, H. et al. New technologies for analysis of extracellular vesicles. Chem. Rev. 118, 1917–1950 (2018).

    CAS  Article  Google Scholar 

  • 10.

    Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  Article  Google Scholar 

  • 11.

    van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  CAS  Google Scholar 

  • 12.

    Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 40, 41–51 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    CAS  Article  Google Scholar 

  • 15.

    Choi, D. S., Kim, D. K., Kim, Y. K. & Gho, Y. S. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom. Rev. 34, 474–490 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  Article  Google Scholar 

  • 17.

    Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  Article  Google Scholar 

  • 18.

    Maas, S. L. N., Breakefield, X. O. & Weaver, A. M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Wang, Z. et al. Dual-selective magnetic analysis of extracellular vesicle glycans. Matter 2, 150–166 (2020).

    Article  Google Scholar 

  • 20.

    Tan, X., Lambert, P. F., Rapraeger, A. C. & Anderson, R. A. Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications. Trends Cell Biol. 26, 352–366 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Ligler, F. S. & Gooding, J. J. Lighting up biosensors: now and the decade to come. Anal. Chem. 91, 8732–8738 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Patterson, D. M., Nazarova, L. A. & Prescher, J. A. Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 9, 592–605 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    CAS  Article  Google Scholar 

  • 27.

    Rutkowska, A. et al. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11, 2541–2550 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    CAS  Article  Google Scholar 

  • 30.

    Lim, C. Z. J. et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat. Commun. 10, 1144 (2019).

    Article  CAS  Google Scholar 

  • 31.

    Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Disco. 4, 1046–1061 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Sandfeld-Paulsen, B. et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol. Oncol. 10, 1595–1602 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Hirsch, F. R. et al. Lung cancer: current therapies and new targeted treatments. Lancet 389, 299–311 (2017).

    CAS  Article  Google Scholar 

  • 34.

    Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    CAS  Article  Google Scholar 

  • 35.

    Wagner, J. A. Strategic approach to fit-for-purpose biomarkers in drug development. Annu. Rev. Pharmacol. Toxicol. 48, 631–651 (2008).

    CAS  Article  Google Scholar 

  • 36.

    Tuntland, T. et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharm. 5, 174 (2014).

    Article  CAS  Google Scholar 

  • 37.

    Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Meehan, B., Rak, J. & Di Vizio, D. Oncosomes—large and small: what are they, where they came from? J. Extracell. Vesicles 5, 33109 (2016).

    Article  Google Scholar 

  • 39.

    Schreiber, C. L. & Smith, B. D. Molecular conjugation using non-covalent click chemistry. Nat. Rev. Chem. 3, 393–400 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Ho, N. R. Y. et al. Visual and modular detection of pathogen nucleic acids with enzyme–DNA molecular complexes. Nat. Commun. 9, 3238 (2018).

    Article  CAS  Google Scholar 

  • 41.

    Sundah, N. R. et al. Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nat. Biomed. Eng. 3, 684–694 (2019).

    CAS  Article  Google Scholar 

  • 42.

    Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016).

    CAS  Article  Google Scholar 

  • 43.

    Wu, X. et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci. Adv. 6, eaba2556 (2020).

    CAS  Article  Google Scholar 

  • 44.

    Lim, C. Z. J., Natalia, A., Sundah, N. R. & Shao, H. Biomarker organization in circulating extracellular vesicles: new applications in detecting neurodegenerative diseases. Adv. Biosyst. 4, e1900309 (2020).

    Article  Google Scholar 

  • 45.

    Lim, C. Z. J., Zhang, L., Zhang, Y., Sundah, N. R. & Shao, H. New sensors for extracellular vesicles: insights on constituent and associated biomarkers. ACS Sens. 5, 4–12 (2020).

    CAS  Article  Google Scholar 

  • 46.

    Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17, 199–204 (2017).

    CAS  Article  Google Scholar 

  • 47.

    Yeh, E. C. et al. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 3, e1501645 (2017).

    Article  CAS  Google Scholar 

  • 48.

    Yelleswarapu, V. et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc. Natl Acad. Sci. USA 116, 4489–4495 (2019).

    CAS  Article  Google Scholar 

  • 49.

    Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  Google Scholar 

  • 50.

    Bianco, G., Forli, S., Goodsell, D. S. & Olson, A. J. Covalent docking using AutoDock: two-point attractor and flexible side chain methods. Protein Sci. 25, 295–301 (2016).

    CAS  Article  Google Scholar 

  • Checkout PrimeXBT
    Trade with the Official CFD Partners of AC Milan
    Source: https://www.nature.com/articles/s41565-021-00872-w

    spot_img

    Latest Intelligence

    spot_img