Zephyrnet Logo

Engineering interfacial polarization switching in van der Waals multilayers – Nature Nanotechnology

Date:

  • Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. 82, 797–818 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Mikolajick, T., Schroeder, U. & Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 67, 1434–1443 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferreira, F., Enaldiev, V. & Fal’ko, V. Scaleability of dielectric susceptibility εzz with the number of layers and additivity of ferroelectric polarization in van der Waals semiconductors. Phys. Rev. B 106, 125408 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, P. et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 13, 7696 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, K. et al. Operando electron microscopy investigation of polar domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, S. H., Schnitzer, N., Brown, L., Park, J. & Hovden, R. Stacking, strain, and twist in 2D materials quantified by 3D electron diffraction. Phys. Rev. Mater. 3, 064003 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zachman, M. J. et al. Interferometric 4D-STEM for lattice distortion and interlayer spacing measurements of bilayer and trilayer 2D materials. Small 17, 2100388 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van Winkle, M. et al. Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers. Nat. Commun. 14, 2989 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano. Lett. 22, 1534–1540 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelke, R. et al. Topological nature of dislocation networks in two-dimensional moiré materials. Phys. Rev. B 107, 125413 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huder, L. et al. Electronic spectrum of twisted graphene layers under heterostrain. Phys. Rev. Lett. 120, 156405 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Edelberg, D., Kumar, H., Shenoy, V., Ochoa, H. & Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 16, 1097–1102 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosma, D. A., Wallbank, J. R., Cheianov, V. & Fal’Ko, V. I. Moiré pattern as a magnifying glass for strain and dislocations in van der Waals heterostructures. Faraday Discuss. 173, 137–143 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by local control of dislocation networks. Adv. Mater. 35, 2207816 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H., Fu, Z., Legut, D., Germann, T. C. & Zhang, R. Stacking stability and sliding mechanism in weakly bonded 2D transition metal carbides by van der Waals force. RSC Adv. 7, 55912–55919 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnson, M., Bloemen, P., Den Broeder, F. & De Vries, J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paes, V. Z. & Mosca, D. H. Effective elastic and magnetoelastic anisotropies for thin films with hexagonal and cubic crystal structures. J. Magn. Magn. Mater. 330, 81–87 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geisenhof, F. R. et al. Anisotropic strain-induced soliton movement changes stacking order and band structure of graphene multilayers: implications for charge transport. ACS Appl. Nano Mater. 2, 6067–6075 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, B. C. et al. Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films. Adv. Mater. 25, 5643–5649 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, W. et al. Nonvolatile ferroelastic strain from flexoelectric internal bias engineering. Phys. Rev. Appl. 17, 024013 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 1–6 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2–VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano. Lett. 18, 1253–1258 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, S. et al. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun. 10, 1775 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higashitarumizu, N. et al. Purely in-plane ferroelectricity in monolayer SnSat room temperature. Nat. Commun. 11, 2428 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater. 32, 1908040 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gong, C., Kim, E. M., Wang, Y., Lee, G. & Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 10, 2657 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, K., Du, W., Dai, Y., Huang, B. & Ma, Y. Two-dimensional magnetoelectric multiferroics in a MnSTe/In2Se3 heterobilayer with ferroelectrically controllable skyrmions. Phys. Rev. B 105, 205427 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. et al. van der waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, I.M. pyInterferometery (GitHub, 2023); https://github.com/bediakolab/pyInterferometry

  • Savitzky, B. H. et al. py4dstem: a software package for four-dimensional scanning transmission electron microscopy data analysis. Microsc. Microanal. 27, 712–743 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, J. & Susi, T. The abtem code: transmission electron microscopy from first principles. ORE 1, 13015 (2021).


    Google Scholar
     

  • Van Winkle, M. & Bediako, D. Source data for “Engineering interfacial polarization switching in van der Waals multilayers” (Zenodo, 2024); https://doi.org/10.5281/zenodo.10697962

  • spot_img

    Latest Intelligence

    spot_img