Zephyrnet Logo

Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material

Date:

  • 1.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    CAS  Google Scholar 

  • 2.

    Shalaginov, M. Y. et al. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics 9, 3505–3534 (2020).

    Google Scholar 

  • 3.

    Kang, L., Jenkins, R. P. & Werner, D. H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 7, 1801813 (2019).

    Google Scholar 

  • 4.

    Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Google Scholar 

  • 5.

    She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Google Scholar 

  • 6.

    Zanotto, S. et al. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide. Adv. Opt. Mater. 5, 1600732 (2017).

    Google Scholar 

  • 7.

    Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett. 18, 2957–2963 (2018).

    CAS  Google Scholar 

  • 8.

    Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS  Google Scholar 

  • 9.

    Ding, L. et al. Electrically and thermally tunable smooth silicon metasurfaces for broadband terahertz antireflection. Adv. Opt. Mater. 6, https://doi.org/10.1002/adom.201800928 (2018).

  • 10.

    Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Google Scholar 

  • 11.

    Rahmani, M. et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater. 27, 1700580 (2017).

    Google Scholar 

  • 12.

    Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241 (2020).

    CAS  Google Scholar 

  • 13.

    Pitchappa, P. et al. Chalcogenide phase change material for active terahertz photonics. Adv. Mater. 31, 1808157 (2019).

    Google Scholar 

  • 14.

    Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    CAS  Google Scholar 

  • 15.

    Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).

    CAS  Google Scholar 

  • 16.

    Kats, M. A. et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013).

    CAS  Google Scholar 

  • 17.

    Liu, L., Kang, L., Mayer, T. S. & Werner, D. H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. 7, 13236 (2016).

    CAS  Google Scholar 

  • 18.

    Dong, W. et al. Tunable mid-infrared phase-change metasurface. Adv. Opt. Mater. 6, 1701346 (2018).

    Google Scholar 

  • 19.

    Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light.: Sci. Appl. 6, e17016 (2017).

    CAS  Google Scholar 

  • 20.

    Tian, J. et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun. 10, 396 (2019).

    Google Scholar 

  • 21.

    Pogrebnyakov, A. V. et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material. Opt. Mater. Express 8, 2264 (2018).

    CAS  Google Scholar 

  • 22.

    Leitis, A. et al. All‐dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

    CAS  Google Scholar 

  • 23.

    Ruiz De Galarreta, C. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476–484 (2020).

    Google Scholar 

  • 24.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2016).

    CAS  Google Scholar 

  • 25.

    Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    CAS  Google Scholar 

  • 26.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    CAS  Google Scholar 

  • 27.

    Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction limited performance. Nat. Commun. 12, 1225 (2021).

    CAS  Google Scholar 

  • 28.

    An, S. et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 6, 3196–3207 (2019).

    CAS  Google Scholar 

  • 29.

    Cao, T. et al. Tuneable thermal emission using chalcogenide metasurface. Adv. Opt. Mater. 6, 1800169 (2018).

    Google Scholar 

  • 30.

    Williams, C., Hong, N., Julian, M., Borg, S. & Kim, H. J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 28, 10583 (2020).

    Google Scholar 

  • 31.

    Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    CAS  Google Scholar 

  • 32.

    Carrillo, S. G.-C., Alexeev, A. M., Au, Y.-Y. & Wright, C. D. Reconfigurable phase-change meta-absorbers with on-demand quality factor control. Opt. Express 26, 25567 (2018).

    CAS  Google Scholar 

  • 33.

    Gholipour, B., Piccinotti, D., Karvounis, A., MacDonald, K. F. & Zheludev, N. I. Reconfigurable ultraviolet and high-energy visible dielectric metamaterials. Nano Lett. 19, 1643–1648 (2019).

    CAS  Google Scholar 

  • 34.

    Michel, A. U. et al. Advanced optical programming of individual meta-atoms beyond the effective medium approach. Adv. Mater. 31, 1901033 (2019).

    Google Scholar 

  • 35.

    Zhang, Y. et al. Broadband transparent optical phase change materials. In Proc. Conf. Lasers and Electro-Optics paper JTh5C.4 (OSA Publishing, 2017); https://doi.org/10.1364/CLEO_AT.2017.JTh5C.4

  • 36.

    Zhang, Q. et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94 (2018).

    CAS  Google Scholar 

  • 37.

    Zhang, Y. et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 10, 4279 (2019).

    Google Scholar 

  • 38.

    Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1 (2019).

    Google Scholar 

  • 39.

    Rios, C. et al. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. Opt. Mater. Express 8, 2455 (2018).

    CAS  Google Scholar 

  • 40.

    Wu, C. et al. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photonics 6, 87–92 (2018).

    Google Scholar 

  • 41.

    Zheng, J. et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 8, 1551 (2018).

    CAS  Google Scholar 

  • 42.

    Lee, S.-Y. et al. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material. Sci. Rep. 7, 41152 (2017).

    CAS  Google Scholar 

  • 43.

    Dong, W. et al. Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29, 1806181 (2019).

    Google Scholar 

  • 44.

    Ríos, C. et al. Multi-level electro-thermal switching of optical phase-change materials using graphene. Adv. Photonics Res. 2, 2000034 (2021).

    Google Scholar 

  • 45.

    Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012).

    CAS  Google Scholar 

  • 46.

    Zhang, L. et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun. 9, 1481 (2018).

    Google Scholar 

  • 47.

    An, S. et al. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express 28, 31932 (2020).

    CAS  Google Scholar 

  • 48.

    Zheng, J. et al. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 2001218, 2001218 (2020).

    Google Scholar 

  • 49.

    Zhang, H. et al. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Sci. Bull. 64, 782–789 (2019).

    CAS  Google Scholar 

  • 50.

    Wang, Y. et al. Electrical tuning of phase change antennas and metasurfaces. Nat. Nanotechnol. https://doi.org/10.1038/s41565-021-00882-8 (2020).

  • 51.

    Petit, L. et al. Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses. J. Solid State Chem. 182, 2756–2761 (2009).

    CAS  Google Scholar 

  • 52.

    Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307 (2007).

    CAS  Google Scholar 

  • 53.

    Musgraves, J. D. et al. Comparison of the optical, thermal and structural properties of Ge-Sb-S thin films deposited using thermal evaporation and pulsed laser deposition techniques. Acta Mater. 59, 5032–5039 (2011).

    CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00881-9

    spot_img

    Latest Intelligence

    spot_img