Zephyrnet Logo

Conformable hierarchically engineered polymeric micromeshes enabling combinatorial therapies in brain tumours

Date:

  • 1.

    Delgado-Lopez, P. D. & Corrales-Garcia, E. M. Survival in glioblastoma: a review on the impact of treatment modalities. Clin. Transl. Oncol. 18, 1062–1071 (2016).

    CAS  Article  Google Scholar 

  • 2.

    Omuro, A. & DeAngelis, L. M. Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842–1850 (2013).

    CAS  Article  Google Scholar 

  • 3.

    Stupp, R. et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314, 2535–2543 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Delgado‐Martín, B. & Medina, M. Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment. Adv. Sci. 7, 1902971 (2020).

    Article  CAS  Google Scholar 

  • 5.

    Jackson, C. M., Choi, J. & Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol. 20, 1100–1109 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  Article  Google Scholar 

  • 7.

    Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509–520 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Giese, A., Bjerkvig, R., Berens, M. E. & Westphal, M. Cost of migration: invasion of malignant gliomas and implications for treatment. J. Clin. Oncol. 21, 1624–1636 (2003).

    CAS  Article  Google Scholar 

  • 9.

    Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    CAS  Article  Google Scholar 

  • 10.

    Lemee, J. M., Clavreul, A. & Menei, P. Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro-Oncol. 17, 1322–1332 (2015).

    CAS  Article  Google Scholar 

  • 11.

    D’Amico, R. S., Englander, Z. K., Canoll, P. & Bruce, J. N. Extent of resection in glioma—a review of the cutting edge. World Neurosurg. 103, 538–549 (2017).

    Article  Google Scholar 

  • 12.

    Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T. & Dietrich, J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat. Rev. Clin. Oncol. 10, 14–26 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    CAS  Article  Google Scholar 

  • 14.

    Lesniak, M. S. & Brem, H. Targeted therapy for brain tumours. Nat. Rev. Drug Discov. 3, 499–508 (2004).

    CAS  Article  Google Scholar 

  • 15.

    Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    CAS  Article  Google Scholar 

  • 16.

    The Cancer Genome Atlas Research Network Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  CAS  Google Scholar 

  • 17.

    Network, T. C. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 494, 506 (2013).

    Article  CAS  Google Scholar 

  • 18.

    Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  Article  Google Scholar 

  • 19.

    Wang, Q. et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 33, 152 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Osuka, S. & Van Meir, E. G. Overcoming therapeutic resistance in glioblastoma: the way forward. J. Clin. Investig. 127, 415–426 (2017).

    Article  Google Scholar 

  • 21.

    Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Lee, A. et al. Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies. Nanomedicine 12, 2139–2147 (2016).

    CAS  Article  Google Scholar 

  • 24.

    Lam, F. C. et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun. 9, 1991 (2018).

  • 25.

    Tamborini, M. et al. A combined approach employing chlorotoxin-nanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma. ACS Nano 10, 2509–2520 (2016).

    CAS  Article  Google Scholar 

  • 26.

    Prados, M. D. et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol. 27, 579–584 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Samal, J., Rebelo, A. L. & Pandit, A. A window into the brain: tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Adv. Drug Deliv. Rev. 148, 68–145 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Randall, E. C. et al. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat. Commun. 9, 4904 (2018).

    Article  CAS  Google Scholar 

  • 29.

    Foley, C. P. et al. Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J. Control. Release 196, 71–78 (2014).

    CAS  Article  Google Scholar 

  • 30.

    Zou, Y. et al. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 30, e1803717 (2018).

    Article  CAS  Google Scholar 

  • 31.

    Timbie, K. F., Mead, B. P. & Price, R. J. Drug and gene delivery across the blood–brain barrier with focused ultrasound. J. Control. Release 219, 61–75 (2015).

    CAS  Article  Google Scholar 

  • 32.

    Aryal, M., Arvanitis, C. D., Alexander, P. M. & McDannold, N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv. Drug Deliv. Rev. 72, 94–109 (2014).

    CAS  Article  Google Scholar 

  • 33.

    May, J. N. et al. Multimodal and multiscale optical imaging of nanomedicine delivery across the blood–brain barrier upon sonopermeation. Theranostics 10, 1948–1959 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Johnsen, K. B. et al. Modulating the antibody density changes the uptake and transport at the blood–brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 295, 237–249 (2019).

    CAS  Article  Google Scholar 

  • 35.

    Lajoie, J. M. & Shusta, E. V. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol. 55, 613–631 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Bu, L. L. et al. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 219, 119182 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Vogelbaum, M. A. & Aghi, M. K. Convection-enhanced delivery for the treatment of glioblastoma. Neuro-Oncol. 17, ii3–ii8 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Brem, H. et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345, 1008–1012 (1995).

    CAS  Article  Google Scholar 

  • 39.

    Bota, D. A., Desjardins, A., Quinn, J. A., Affronti, M. L. & Friedman, H. S. Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther. Clin. Risk Manag. 3, 707–715 (2007).

    CAS  Google Scholar 

  • 40.

    Shapira-Furman, T. et al. Biodegradable wafers releasing temozolomide and carmustine for the treatment of brain cancer. J. Control. Release 295, 93–101 (2019).

    CAS  Article  Google Scholar 

  • 41.

    Song, E. et al. Surface chemistry governs cellular tropism of nanoparticles in the brain. Nat. Commun. 8, 15322 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Jahangiri, A. et al. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J. Neurosurg. 126, 191–200 (2017).

    Article  Google Scholar 

  • 43.

    Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    CAS  Article  Google Scholar 

  • 44.

    Talebian, S. et al. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv. Mater. 30, e1706665 (2018).

    Article  CAS  Google Scholar 

  • 45.

    Jain, A. et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat. Mater. 13, 308–316 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Hosseinzadeh, R. et al. A drug‐eluting 3D‐printed mesh (GlioMesh) for management of glioblastoma. Adv. Ther. 2, 1900113 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Han, D. et al. Multi-layered core–sheath fiber membranes for controlled drug release in the local treatment of brain tumor. Sci. Rep. 9, 17936 (2019).

  • 48.

    Ramachandran, R. et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci. Rep. 7, 43271 (2017).

    Article  Google Scholar 

  • 49.

    Wang, C. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, eaan3682 (2018).

  • 50.

    Wang, T. et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 9, 1532 (2018).

    Article  CAS  Google Scholar 

  • 51.

    Lee, J. et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019).

    Article  CAS  Google Scholar 

  • 52.

    Theruvath, J. et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat. Med. 26, 712–719 (2020).

  • 53.

    Donovan, L. K. et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 26, 720–731 (2020).

  • 54.

    Sahoo, S. K., Panyam, J., Prabha, S. & Labhasetwar, V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 82, 105–114 (2002).

    CAS  Article  Google Scholar 

  • 55.

    Zweers, M. L., Engbers, G. H., Grijpma, D. W. & Feijen, J. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J. Control. Release 100, 347–356 (2004).

    CAS  Article  Google Scholar 

  • 56.

    Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  Article  Google Scholar 

  • 57.

    Dancy, J. G. et al. Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. J. Control. Release 238, 139–148 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Kalb, E. & Engel, J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J. Biol. Chem. 266, 19047–19052 (1991).

    CAS  Article  Google Scholar 

  • 59.

    Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    CAS  Article  Google Scholar 

  • 60.

    Narayanan, A. et al. The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death Differ. 26, 1813–1831 (2019).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00879-3

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?