Zephyrnet Logo

Chronic exposure to warm temperature causes low sperm abundance and quality in Drosophila melanogaster – Scientific Reports

Date:

  • Gaskins, A. J. & Chavarro, J. E. Diet and fertility: A review. Am. J. Obstet. Gynecol. 218, 379–389 (2018).

    Article  PubMed  Google Scholar 

  • Albert Hubbard, E. J. & Schedl, T. Biology of the Caenorhabditis elegans germline stem cell system. Genetics 213, 1145–1188 (2019).

    Article  Google Scholar 

  • Drummond-Barbosa, D. Local and physiological control of germline stem cell lineages in Drosophila melanogaster. Genetics 213, 9–26 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140330 (2015).

    Article  Google Scholar 

  • Buckley, L. B. & Kingsolver, J. G. Evolution of thermal sensitivity in changing and variable climates. Annu. Rev. Ecol. Evol. Syst. 52, 563–586 (2021).

    Article  Google Scholar 

  • Masson-Delmotte, V. et al. IPCC, 2021: Summary for Policymakers (Cambridge University Press, 2021). https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf. https://doi.org/10.1017/9781009157896.001.

  • Kumar, M., Ratwan, P., Dahiya, S. P. & Nehra, A. K. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J. Therm. Biol. 97, 102867 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Jensen, P. M., Sørensen, M. & Weiner, J. Human total fertility rate affected by ambient temperatures in both the present and previous generations. Int. J. Biometeorol. 65, 1837–1848 (2021).

    Article  ADS  PubMed  Google Scholar 

  • Mishra, S. R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 53, 400 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Segal, T. R. & Giudice, L. C. Systematic review of climate change effects on reproductive health. Fertil. Steril. 118, 215–223 (2022).

    Article  PubMed  Google Scholar 

  • Walsh, B. S. et al. The Impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

    Article  PubMed  Google Scholar 

  • González-Tokman, D. et al. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 95, 802–821 (2020).

    Article  PubMed  Google Scholar 

  • Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).

    Article  ADS  Google Scholar 

  • van Heerwaarden, B. & Sgrò, C. M. Male fertility thermal limits predict vulnerability to climate warming. Nat. Commun. 12, 2214 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Wang, W. W. Y. & Gunderson, A. R. The physiological and evolutionary ecology of sperm thermal performance. Front. Physiol. 13, 505 (2022).

    Google Scholar 

  • Schowalter, T. D., Noriega, J. A. & Tscharntke, T. Insect effects on ecosystem services—Introduction. Basic Appl. Ecol. 26, 1–7 (2018).

    Article  Google Scholar 

  • Plough, H. H. & Strauss, M. B. Experiments on toleration of temperature by Drosophila. J. Gen. Physiol. 6, 167–176 (1923).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, W. C. & Plough, H. H. On the sterilization of Drosophila by high temperature. Biol. Bull. 51, 189–198 (1926).

    Article  Google Scholar 

  • Alpatov, W. W. Egg production in Drosophila melanogaster and some factors which influence it. J. Exp. Zool. 63, 85–111 (1932).

    Article  Google Scholar 

  • Dobzhansky, Th. Fecundity in Drosophila pseudoobscura at different temperatures. J. Exp. Zool. 71, 449–464 (1935).

    Article  Google Scholar 

  • Kaliss, N. & Graubard, M. A. The effect of temperature on oviposition in Drosophila melanogaster. Biol Bull 70, 385–391 (1936).

    Article  Google Scholar 

  • Frankel, A. W. K., Peters, U. & Meyer, G. F. Variation in fertility of two wild type strains of Drosophila melanogaster meigen. Chromosoma 34, 113–128 (1971).

    Article  Google Scholar 

  • Cohet, Y. & David, J. Control of the adult reproductive potential by preimaginal thermal conditions. Oecologia 36, 295–306 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rohmer, C., David, J. R., Moreteau, B. & Joly, D. Heat induced male sterility in Drosophila melanogaster : Adaptive genetic variations among geographic populations and role of the Y chromosome. J. Exp. Biol. 207, 2735–2743 (2004).

    Article  PubMed  Google Scholar 

  • Vollmer, J. H., Sarup, P., Kærsgaard, C. W., Dahlgaard, J. & Loeschcke, V. Heat and cold-induced male sterility in Drosophila buzzatii: Genetic variation among populations for the duration of sterility. Heredity 92, 257–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ben-David, G., Miller, E. & Steinhauer, J. Drosophila spermatid individualization is sensitive to temperature and fatty acid metabolism. Spermatogenesis 5, e1006089 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Porcelli, D., Gaston, K. J., Butlin, R. K. & Snook, R. R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 30, 422–429 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 4771 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Kirk Green, C., Moore, P. J. & Sial, A. A. Impact of heat stress on development and fertility of Drosophila suzukii Matsumura (Diptera: Drosophilidae). J. Insect Physiol. 114, 45–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zwoinska, M. K., Rodrigues, L. R., Slate, J. & Snook, R. R. Phenotypic responses to and genetic architecture of sterility following exposure to sub-lethal temperature during development. Front. Genet. 11, 1–12 (2020).

    Article  Google Scholar 

  • Canal Domenech, B. & Fricke, C. Recovery from heat-induced infertility—A study of reproductive tissue responses and fitness consequences in male Drosophila melanogaster. Ecol. Evol. 12, e9563 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, L. R. et al. Fluctuating heat stress during development exposes reproductive costs and putative benefits. J. Anim. Ecol. 91, 391–403 (2022).

    Article  PubMed  Google Scholar 

  • David, J. R. et al. Male sterility at extreme temperatures: A significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Klepsatel, P., Girish, T. N., Dircksen, H. & Gáliková, M. Reproductive fitness of Drosophila is maximised by optimal developmental temperature. J. Exp. Biol. 222, 1–11 (2019).

    Google Scholar 

  • Araripe, L. O., Klaczko, L. B., Moreteau, B. & David, J. R. Male sterility thresholds in a tropical cosmopolitan drosophilid, Zaprionus indianus. J. Therm. Biol. 29, 73–80 (2004).

    Article  Google Scholar 

  • Krebs, R. A. & Loeschcke, V. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. J. Evol. Biol. 7, 39–49 (1994).

    Article  Google Scholar 

  • Jørgensen, K. T., Sørensen, J. G. & Bundgaard, J. Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. J. Therm. Biol. 31, 280–286 (2006).

    Article  Google Scholar 

  • Fuller, M. T. Spermatogenesis. In The Development of Drosophila melanogaster (eds Bate, M. & Martinez Arias, A.) 71–147 (Cold Spring Harbor Laboratory Press, 1993).

    Google Scholar 

  • Renkawitz-Pohl, R., Hempel, L., Hollmann, M. & Schäfer, M. A. Spermatogenesis. In Comprehensive Molecular Insect Science 157–177 (Elsevier, 2005).

    Chapter  Google Scholar 

  • Fabian, L. & Brill, J. A. Drosophila spermiogenesis. Spermatogenesis 2, 197–212 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bairati, A. Struttura ed ultrastruttura dell’apparato genitale maschile di Drosophila melanogaster Meig. Z. Zellforsch. Mikrosk. Anat. 76, 56–99 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L. & Garavito, M. The germinal proliferation center in the testis of Drosophila melanogaster. J. Ultrastruct. Res. 69, 180–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Greenspan, L. J., de Cuevas, M. & Matunis, E. Genetics of gonadal stem cell renewal. Annu. Rev. Cell Dev. Biol. 31, 291–315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaramaiah Raja, S. & Renkawitz-Pohl, R. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol. Cell Biol. 26, 3682–3682 (2006).

    Article  PubMed Central  Google Scholar 

  • Tirmarche, S. et al. Drosophila protamine-like Mst35Ba and Mst35Bb are required for proper sperm nuclear morphology but are dispensable for male fertility. G3 Genes Genomes Genetics 4, 2241–2245 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokuyasu, K. T., Peacock, W. J. & Hardy, R. W. Dynamics of spermiogenesis in Drosophila melanogaster—I. Individualization process. Z. Zellforsch. Mikrosk. Anat. 124, 479–506 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev. Cell 4, 687–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Tokuyasu, K. T., Peacock, W. J. & Hardy, R. W. Dynamics of spermiogenesis in Drosophila melanogaster—II. Coiling process. Z. Zellforsch. Mikrosk. Anat. 127, 492–525 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Gandara, A. C. P. & Drummond-Barbosa, D. Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis. Development 149, dev200149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durairajanayagam, D., Agarwal, A. & Ong, C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod. BioMed. Online 30, 14–27. https://doi.org/10.1016/j.rbmo.2014.09.018 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R., Iovine, C., Agarwal, A. & Henkel, R. TUNEL assay—Standardized method for testing sperm DNA fragmentation. Andrologia 53, e13738 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yacobi-Sharon, K., Namdar, Y. & Arama, E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev. Cell 25, 29–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Hasan, S., Hétié, P. & Matunis, E. L. Niche signaling promotes stem cell survival in the Drosophila testis via the JAK–STAT target DIAP1. Dev. Biol. 404, 27–39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell Longev. 2016, 1–12 (2016).

    Article  CAS  Google Scholar 

  • Xiao, L. et al. Effect of ambient temperature variability on sperm quality: A retrospective population-based cohort study. Sci. Total Environ. 851, 158245 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chakir, M., Chafik, A., Moreteau, B., Gibert, P. & David, J. R. Male sterility thermal thresholds in Drosophila: D. simulans appears more cold-adapted than its sibling D. melanogaster. Genetica 114, 195–205 (2002).

    Article  PubMed  Google Scholar 

  • Mayhew, M. L. & Merritt, D. J. The morphogenesis of spermathecae and spermathecal glands in Drosophila melanogaster. Arthropod. Struct. Dev. 42, 385–393 (2013).

    Article  PubMed  Google Scholar 

  • Yang, Y. & Lu, X. Drosophila sperm motility in the reproductive tract. Biol. Reprod. 84, 1005–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doane, W. W. Completion of meiosis in uninseminated eggs of Drosophila melanogaster. Science 1979(132), 677–678 (1960).

    Article  ADS  Google Scholar 

  • Freeman, M. & Glover, D. M. The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev. 1, 924–930 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Bownes, M. A photographic study of development in the living embryo of Drosophila melanogaster. Embryol. Exp. Morph. 33, 789–880 (1975).

    ADS  CAS  Google Scholar 

  • Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, Berlin, 1985). https://doi.org/10.1007/978-3-662-02454-6.

    Book  Google Scholar 

  • Nguyen, T. M., Bressac, C. & Chevrier, C. Heat stress affects male reproduction in a parasitoid wasp. J. Insect Physiol. 59, 248–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Cheshire, W. P. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. 196, 91–104 (2016).

    Article  PubMed  Google Scholar 

  • Evenson, D. P., Jost, L. K., Corzett, M. & Balhorn, R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: A case study. J. Androl. 21, 739–746 (2000).

    CAS  PubMed  Google Scholar 

  • Capela, L., Leites, I., Romão, R., Lopes-da-Costa, L. & Pereira, R. M. L. N. Impact of heat stress on bovine sperm quality and competence. Animals 12, 975 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters, A. H., Saacke, R. G., Pearson, R. E. & Gwazdauskas, F. C. Assessment of pronuclear formation following in vitro fertilization with bovine spermatozoa obtained after thermal insulation of the testis. Theriogenology 65, 1016–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Paul, C., Murray, A. A., Spears, N. & Saunders, P. T. K. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136, 73–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Robinson, B. R., Netherton, J. K., Ogle, R. A. & Baker, M. A. Testicular heat stress, a historical perspective and two postulates for why male germ cells are heat sensitive. Biol. Rev. 98, 603–622 (2023).

    Article  PubMed  Google Scholar 

  • Cataldo, L., Mastrangelo, M.-A. & Kleene, K. C. Differential effects of heat shock on translation of normal mRNAs in primary spermatocytes, elongated spermatids, and sertoli cells in seminiferous tubule culture. Exp. Cell Res. 231, 206–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Setchell, B. P. The parkes lecture heat and the testis. Reproduction 114, 179–194 (1998).

    Article  CAS  Google Scholar 

  • Cai, H., Qin, D. & Peng, S. Responses and coping methods of different testicular cell types to heat stress: Overview and perspectives. Biosci. Rep. 41, BSR20210443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loppin, B., Dubruille, R. & Horard, B. The intimate genetics of Drosophila fertilization. Open Biol. 5, 150076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Stetina, J. R. et al. α-Endosulfine is a conserved protein required for oocyte meiotic maturation in Drosophila. Development 135, 3697–3706 (2008).

    Article  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img