Zephyrnet Logo

Chimeric nanobody-decorated liposomes by self-assembly – Nature Nanotechnology

Date:

  • Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Castro Bravo, K. M. & Liu, J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 6, 78–94 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamot, C. et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 65, 11631–11638 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alavi, M. & Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 34, 20180032 (2019).

  • Leserman, L. D., Machy, P. & Barbet, J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 293, 226–228 (1981).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nellis, D. F. et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol. Prog. 21, 205–220 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. R., Sefah, K., Liu, H. P., Wang, R. W. & Tan, W. H. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc. Natl Acad. Sci. USA 107, 5–10 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liu, Y. N. et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol. Pharm. 17, 1276–1292 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hama, S., Sakai, M., Itakura, S., Majima, E. & Kogure, K. Rapid modification of antibodies on the surface of liposomes composed of high-affinity protein A-conjugated phospholipid for selective drug delivery. Biochem Biophys. Rep. 27, 101067 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, E. J., Lee, J. W. & Ellington, A. D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2, 241–264 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ma et al. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev. 44, 1240–1256 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Nucleic acid aptamers for molecular diagnostics and therapeutics: advances and perspectives. Angew. Chem. Int. Ed. Engl. 60, 2221–2231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X., Zaro, J. L. & Shen, W. C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65, 1357–1369 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finger, C., Escher, C. & Schneider, D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Signal 2, ra56 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lāce, I., Cotroneo, E. R., Hesselbarth, N. & Simeth, N. A. Artificial peptides to induce membrane denaturation and disruption and modulate membrane composition and fusion. J. Pept. Sci. 29, e3466 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rahman, M. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid domain in uniform-size peptide vesicles for controlled release. J. Am. Chem. Soc. 140, 17956–17961 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z., Moon, J. J. & Cheng, W. Quantitation and stability of protein conjugation on liposomes for controlled density of surface epitopes. Bioconjug. Chem. 29, 1251–1260 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, S. et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J. Control. Release 145, 165–175 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Meel, R. et al. Tumor-targeted nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J. Control. Release 159, 281–289 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv. 24, 1770–1781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. & Hosseini, H. R. M. Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells. Cell. Mol. Bioeng. 10, 263–272 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woll, S. et al. Sortagging of liposomes with a murine CD11b-specific VHH increases in vitro and in vivo targeting specificity of myeloid cells. Eur. J. Pharm. Biopharm. 134, 190–198 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mesquita, B. S. et al. The impact of nanobody density on the targeting efficiency of PEGylated liposomes. Int. J. Mol. Sci. 23, 14974 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, T., Hirose, S., Sasaki, Y. & Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 142, 154–161 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golfetto, O., Hinde, E. & Gratton, E. Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys. J. 104, 1238–1247 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Marsh, D. Thermodynamics of phospholipid self-assembly. Biophys. J. 102, 1079–1087 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hessa, T. et al. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wan, Y. et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J. Phys. Chem. B 115, 13891–13896 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grillo, I., Morfin, I. & Prevost, S. Structural characterization of pluronic micelles swollen with perfume molecules. Langmuir 34, 13395–13408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, T. et al. Chitosan in mucoadhesive drug delivery: focus on local vaginal therapy. Mar. Drugs 13, 222–236 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Takikawa, M., Fujisawa, M., Yoshino, K. & Takeoka, S. Intracellular distribution of lipids and encapsulated model drugs from cationic liposomes with different uptake pathways. Int J. Nanomed. 15, 8401–8409 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, W. S. & Malmstadt, N. Liposome production and concurrent loading of drug simulants by microfluidic hydrodynamic focusing. Eur. Biophys. J. 48, 549–558 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haque, M. E., McIntosh, T. J. & Lentz, B. R. Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “Nature’s own” fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman, M. M., Abosheasha, M. A., Ito, Y. & Ueda, M. DNA-induced fusion between lipid domains of peptide–lipid hybrid vesicles. Chem. Commun. 58, 11799–11802 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dominguez, L., Foster, L., Straub, J. E. & Thirumalai, D. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc. Natl Acad. Sci. USA 113, E5281–E5287 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, B. H. et al. Sequential intercellular delivery nanosystem for enhancing ROS-Induced antitumor therapy. Nano Lett. 19, 3505–3518 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tarafdar, P. K., Chakraborty, H., Dennison, S. M. & Lentz, B. R. Phosphatidylserine inhibits and calcium promotes model membrane fusion. Biophys. J. 103, 1880–1889 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lygina, A. S., Meyenberg, K., Jahn, R. & Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int Ed. 50, 8597–8601 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Risselada, H. J., Kutzner, C. & Grubmuller, H. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. ChemBioChem 12, 1049–2011 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, H. J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kozlowska, D. et al. Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin’s lymphoma (human Burkitt’s lymphoma). RSC Adv. 4, 18007–18016 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ingolfsson, H. I. et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheve, C. S., Gonzales, P. A., Momin, N. & Stachowiak, J. C. Steric pressure between membrane-bound proteins opposes lipid phase separation. J. Am. Chem. Soc. 135, 1185–1188 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Lomize, A. L., Lomize, M. A., Krolicki, S. R. & Pogozheva, I. D. Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res. 45, D250–D255 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardon, E. et al. A general protocol for the generation of nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jovcevska, I. et al. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers. PLoS ONE 9, e113688 (2014).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hmila, I. et al. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 24, 3479–3489 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farajpour, Z., Rahbarizadeh, F., Kazemi, B. & Ahmadvand, D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem. Biophys. Res. Commun. 446, 132–136 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roovers, R. C. et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int. J. Cancer 129, 2013–2024 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, H., Maier, J., Huang, H., Perrone, V. & Simmerling, C. Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. J. Am. Chem. Soc. 136, 13959–13962 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLano W. L. PyMOL molecular viewer: updates and refinements. Abstr. Pap. Am. Chem. S 238, (2009).

  • Genheden, S. & Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 10, 449–461 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A. & Moreno, E. gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17, 6281–6291 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Et-Thakafy, O. et al. Mechanical properties of membranes composed of gel-phase or fluid-phase phospholipids probed on liposomes by atomic force spectroscopy. Langmuir 33, 5117–5126 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Custodio, T. F. et al. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat. Commun. 11, 5588 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Callister, W. D. & Rethwisch, D. G. Materials Science and Engineering: An Introduction Vol. 7 (Wiley, 2020).

  • McQuarrie, D. A., Jachimowski, C. & Russell, M. Kinetics of small systems. II. J. Chem. Phys. 40, 2914–2921 (1964).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Decuzzi, P. & Ferrari, M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307–5314 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piper, J. W., Swerlick, R. A. & Zhu, C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys. J. 74, 492–513 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall 0.2. Couette flow. Chem. Eng. Sci. 22, 637–651 (1967).

  • spot_img

    Latest Intelligence

    spot_img