Zephyrnet Logo

Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous

Date:

  • Kim, H. et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 596, 232–237 (2021).

    Article  CAS  Google Scholar 

  • Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).

    Article  CAS  Google Scholar 

  • Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Article  CAS  Google Scholar 

  • Chen, X. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017).

    Article  Google Scholar 

  • Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  CAS  Google Scholar 

  • Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015).

    Article  CAS  Google Scholar 

  • Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  • Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  • Ge, S. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett. 15, 4650–4656 (2015).

    Article  CAS  Google Scholar 

  • Bhaskar, P., Achtstein, A. W., Vermeulen, M. J. W. & Siebbeles, L. D. A. Radiatively dominated charge carrier recombination in black phosphorus. J. Phys. Chem. C 120, 13836–13842 (2016).

    Article  CAS  Google Scholar 

  • Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T. & Bright, T. B. Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57, 249–252 (1986).

    Article  CAS  Google Scholar 

  • Edmonds, M. T. et al. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557–14562 (2015).

    Article  CAS  Google Scholar 

  • Zhou, Q., Chen, Q., Tong, Y. & Wang, J. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55, 11437–11441 (2016).

    Article  CAS  Google Scholar 

  • Luo, W. et al. Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 27, 434002 (2016).

    Article  Google Scholar 

  • Ziletti, A. et al. Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Phys. Rev. B 91, 085407 (2015).

  • Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  • Chen, H., Fei, W., Zhou, J., Miao, C. & Guo, W. Layer identification of colorful black phosphorus. Small 13, 1602336 (2017).

  • Yang, J. et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4, e312 (2015).

    Article  CAS  Google Scholar 

  • Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  CAS  Google Scholar 

  • Tian, R. et al. Observation of excitonic series in monolayer and few-layer black phosphorus. Phys. Rev. B 101, 235407 (2020).

  • Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article  CAS  Google Scholar 

  • Zhang, G. et al. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 4, eaap9977 (2018).

    Article  Google Scholar 

  • Tran, V., Fei, R. & Yang, L. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015).

    Article  Google Scholar 

  • Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Environmental screening effects in 2D materials: renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus. Nano Lett. 17, 4706–4712 (2017).

    Article  CAS  Google Scholar 

  • Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  CAS  Google Scholar 

  • Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  Google Scholar 

  • Uddin, S. Z., Rabani, E. & Javey, A. Universal inverse scaling of exciton–exciton annihilation coefficient with exciton lifetime. Nano Lett. 21, 424–429 (2021).

    Article  CAS  Google Scholar 

  • Kim, H., Uddin, S. Z., Higashitarumizu, N., Rabani, E. & Javey, A. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science 373, 448–452 (2021).

    Article  CAS  Google Scholar 

  • Kim, B. et al. Free trions with near-unity quantum yield in monolayer MoSe2. ACS Nano 16, 140–147 (2021).

    Article  Google Scholar 

  • Uddin, S. Z., Higashitarumizu, N., Kim, H., Rahman, I. K. M. R. & Javey, A. Efficiency roll-off free electroluminescence from monolayer WSe2. Nano Lett. 22, 5316–5321 (2022).

    Article  CAS  Google Scholar 

  • Uddin, S. Z., Higashitarumizu, N., Kim, H., Rabani, E. & Javey, A. Engineering exciton recombination pathways in bilayer WSe2 for bright luminescence. ACS Nano 16, 1339–1345 (2022).

    Article  CAS  Google Scholar 

  • Surrente, A. et al. Excitons in atomically thin black phosphorus. Phys. Rev. B 93, 121405 (2016).

    Article  Google Scholar 

  • Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  • Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89, 201408(R) (2014).

  • Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  Google Scholar 

  • Wei, Y.-C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photon. 14, 570–577 (2020).

    Article  CAS  Google Scholar 

  • Hall, R. N. in Semiconductor Devices: Pioneering Papers (ed. Sze, S. M.) 70 (World Scientific, 1991).

  • Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  • Fitzgerald, D. J. & Grove, A. S. Surface recombination in semiconductors. Surf. Sci. 9, 347–369 (1968).

    Article  CAS  Google Scholar 

  • McIntosh, K. R. & Black, L. E. On effective surface recombination parameters. J. Appl. Phys. 116, 014503 (2014).

    Article  Google Scholar 

  • Dumke, W. P. Spontaneous radiative recombination in semiconductors. Phys. Rev. 105, 139–144 (1957).

    Article  CAS  Google Scholar 

  • Beattie, A. R. & Landsberg, P. T. Auger effect in semiconductors. Proc. R. Soc. Lond. 249, 16–29 (1959).

    CAS  Google Scholar 

  • Haug, A. Auger recombination in direct-gap semiconductors: band-structure effects. J. Phys. 16, 4159–4172 (1983).

    CAS  Google Scholar 

  • Bemski, G. Recombination in semiconductors. Proc. IRE 46, 990–1004 (1958).

    Article  Google Scholar 

  • Abakumov, V. N., Perel, V. I. & Yassievich, I. N. in Nonradiative Recombination in Semiconductors (eds Agranovich, V. M. & Maradudin, A. A.) xi (Elsevier, 1991).

  • Aspnes, D. E. Recombination at semiconductor surfaces and interfaces. Surf. Sci. 132, 406–421 (1983).

    Article  CAS  Google Scholar 

  • Aytac, Y. et al. Bandgap and temperature dependence of Auger recombination in InAs/InAsSb type-II superlattices. J. Appl. Phys. 119, 215705 (2016).

    Article  Google Scholar 

  • Delaney, K. T., Rinke, P. & Van de Walle, C. G. Auger recombination rates in nitrides from first principles. Appl. Phys. Lett. 94, 191109 (2009).

    Article  Google Scholar 

  • Combescot, M. & Combescot, R. Auger recombination in direct-gap semiconductors: effect of anisotropy and warping. Phys. Rev. B 37, 8781–8790 (1988).

    Article  CAS  Google Scholar 

  • Kurtz, S. R., Biefeld, R. M. & Dawson, L. R. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1–xSbx. Phys. Rev. B 51, 7310–7313 (1995).

  • Chen, C. et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 19, 1488–1493 (2019).

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, J.-X. & Van de Walle, C. G. Anomalous Auger recombination in PbSe. Phys. Rev. Lett. 125, 037401 (2020).

    Article  CAS  Google Scholar 

  • Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

  • Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947).

    Article  Google Scholar 

  • Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. 8, 473–487 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1099-159X(200009/10)8:53.0.CO;2-D” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1099-159X%28200009%2F10%298%3A5%3C473%3A%3AAID-PIP337%3E3.0.CO%3B2-D” aria-label=”Article reference 57″ data-doi=”10.1002/1099-159X(200009/10)8:53.0.CO;2-D”>Article  CAS  Google Scholar 

  • Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  • Huang, X., Lindgren, E. & Chelikowsky, J. R. Surface passivation method for semiconductor nanostructures. Phys. Rev. B 71, 165328 (2005).

    Article  Google Scholar 

  • Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015).

    Article  CAS  Google Scholar 

  • Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  CAS  Google Scholar 

  • Gupta, N. et al. Bright mid-wave infrared resonant-cavity light-emitting diodes based on black phosphorus. Nano Lett. 22, 1294–1301 (2022).

    Article  CAS  Google Scholar 

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  • Giannozzi, P. et al. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img