Zephyrnet Logo

Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics – Nature Nanotechnology

Date:

  • de Magalhaes, J. P. How ageing processes influence cancer. Nat. Rev. Cancer 13, 357–365 (2013).

    Article  Google Scholar 

  • Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer 122, 943–952 (2020).

    Article  Google Scholar 

  • Van Herck, Y. et al. Is cancer biology different in older patients? Lancet Healthy Longev. 2, E663–E677 (2021).

    Article  Google Scholar 

  • Sceneay, J. et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 9, 1208–1227 (2019).

    Article  CAS  Google Scholar 

  • Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  CAS  Google Scholar 

  • Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010).

    Article  CAS  Google Scholar 

  • Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng 1, 0029 (2017).

    Article  CAS  Google Scholar 

  • Rodriguez, P. L. et al. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  Google Scholar 

  • Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8, 61–68 (2013).

    Article  CAS  Google Scholar 

  • Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  CAS  Google Scholar 

  • Barenholz, Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article  CAS  Google Scholar 

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    Article  CAS  Google Scholar 

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  CAS  Google Scholar 

  • Jiang, W., Wang, Y., Wargo, J. A., Lang, F. F. & Kim, B. Y. S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 16, 6–15 (2021).

    Article  Google Scholar 

  • Ouyang, B. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19, 1362–1371 (2020).

    Article  CAS  Google Scholar 

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 1–12 (2016).

    Article  Google Scholar 

  • Chen, Y. et al. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery. Adv. Sci. (Weinh.) 6, 1802070 (2019).

    Google Scholar 

  • Pili, R. et al. Altered angiogenesis underlying age-dependent changes in tumor growth. J. Natl Cancer Inst. 86, 1303–1314 (1994).

    Article  CAS  Google Scholar 

  • Marinho, A., Soares, R., Ferro, J., Lacerda, M. & Schmitt, F. C. Angiogenesis in breast cancer is related to age but not to other prognostic parameters. Pathol. Res. Pract. 193, 267–273 (1997).

    Article  CAS  Google Scholar 

  • Ouyang, B. et al. Impact of tumor barriers on nanoparticle delivery to macrophages. Mol. Pharm. 19, 1917–1925 (2022).

    Article  CAS  Google Scholar 

  • Grolleau, A., Misek, D. E., Kuick, R., Hanash, S. & Mule, J. J. Inducible expression of macrophage receptor Marco by dendritic cells following phagocytic uptake of dead cells uncovered by oligonucleotide arrays. J. Immunol. 171, 2879–2888 (2003).

    Article  CAS  Google Scholar 

  • Hamilton, R. F. Jr., Thakur, S. A., Mayfair, J. K. & Holian, A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem. 281, 34218–34226 (2006).

    Article  CAS  Google Scholar 

  • Park, J. et al. Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proc. Natl Acad. Sci. USA 116, 14947–14954 (2019).

    Article  CAS  Google Scholar 

  • Pikkarainen, T., Brannstrom, A. & Tryggvason, K. Expression of macrophage MARCO receptor induces formation of dendritic plasma membrane processes. J. Biol. Chem. 274, 10975–10982 (1999).

    Article  CAS  Google Scholar 

  • Hirano, S., Fujitani, Y., Furuyama, A. & Kanno, S. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol. Appl Pharm. 259, 96–103 (2012).

    Article  CAS  Google Scholar 

  • van der Laan, L. J. et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol. 162, 939–947 (1999).

    Article  Google Scholar 

  • Arredouani, M. S. et al. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol. 175, 6058–6064 (2005).

    Article  CAS  Google Scholar 

  • Li, Z. et al. Aging-impaired filamentous actin polymerization signaling reduces alveolar macrophage phagocytosis of bacteria. J. Immunol. 199, 3176–3186 (2017).

    Article  CAS  Google Scholar 

  • Ojala, J. R., Pikkarainen, T., Tuuttila, A., Sandalova, T. & Tryggvason, K. Crystal structure of the cysteine-rich domain of scavenger receptor MARCO reveals the presence of a basic and an acidic cluster that both contribute to ligand recognition. J. Biol. Chem. 282, 16654–16666 (2007).

    Article  CAS  Google Scholar 

  • Novakowski, K. E. et al. A naturally occurring transcript variant of MARCO reveals the SRCR domain is critical for function. Immunol. Cell Biol. 94, 646–655 (2016).

    Article  CAS  Google Scholar 

  • Brannstrom, A., Sankala, M., Tryggvason, K. & Pikkarainen, T. Arginine residues in domain V have a central role for bacteria-binding activity of macrophage scavenger receptor MARCO. Biochem. Biophys. Res. Commun. 290, 1462–1469 (2002).

    Article  Google Scholar 

  • Wang, Y. et al. Mutant LKB1 confers enhanced radiosensitization in combination with trametinib in KRAS-mutant non-small cell lung cancer. Clin. Cancer Res. 24, 5744–5756 (2018).

    Article  CAS  Google Scholar 

  • Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    Article  CAS  Google Scholar 

  • Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  • Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  Google Scholar 

  • spot_img

    VC Cafe

    VC Cafe

    Latest Intelligence

    spot_img