Zephyrnet Logo

A short dasatinib and quercetin treatment is sufficient to reinstate potent adult neuroregenesis in the aged killifish – npj Regenerative Medicine

Date:

  • Valenzano, D. R. et al. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell 163, 1539–1554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdesalici, S. & Cellerino, A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc. R. Soc. London. Ser. B Biol. Sci. 270, S189–S191 (2003).

    Article  Google Scholar 

  • Polačik, M., Blažek, R. & Reichard, M. Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nat. Protoc. 11, 1396–1413 (2016).

    Article  PubMed  Google Scholar 

  • Reichwald, K. et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163, 1527–1538 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Harel, I., Valenzano, D. R. & Brunet, A. Efficient genome engineering approaches for the short-lived African turquoise killifish. Nat. Protoc. 11, 2010–2028 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Baumgart, M. et al. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri. Mech. Ageing Dev. 133, 226–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Baumgart, M. et al. RNA-seq of the aging brain in the short-lived fish N-furzeri—conserved pathways and novel genes associated with neurogenesis. Aging Cell 13, 965–974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart, M. et al. Longitudinal RNA-seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst. 2, 122–132 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Ng’oma, E., Groth, M., Ripa, R., Platzer, M. & Cellerino, A. Transcriptome profiling of natural dichromatism in the annual fishes Nothobranchius furzeri and Nothobranchius kadleci. BMC Genomics 15, 754 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Petzold, A. et al. The transcript catalogue of the short-lived fish Nothobranchius furzeri provides insights into age-dependent changes of mRNA levels. BMC Genomics 14, 185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, C.-K. et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 367, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayana, R. et al. Single-cell sequencing unravels the cellular diversity that shapes neuro- and gliogenesis in the fast aging killifish (N. furzeri) brain. biorXiv https://doi.org/10.1101/2021.07.04.450918 (2021).

  • Sacramento, E. K. et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020).

    Article  Google Scholar 

  • Valenzano, D. R. et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 16, 296–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Tozzini, E. T., Baumgart, M., Battistoni, G. & Cellerino, A. Adult neurogenesis in the short‐lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 11, 241–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Vanhunsel, S. et al. The killifish visual system as an in vivo model to study brain aging and rejuvenation. npj Aging Mech. Dis 7, 1–17 (2021).

    Article  Google Scholar 

  • Van houcke, J. et al. Aging impairs the essential contributions of non‐glial progenitors to neurorepair in the dorsal telencephalon of the Killifish Nothobranchius furzeri. Aging Cell 20, 1–18 (2021).

    Google Scholar 

  • Matsui, H., Kenmochi, N. & Namikawa, K. Age- and α-Synuclein-dependent degeneration of dopamine and noradrenaline neurons in the Annual Killifish Nothobranchius furzeri. Cell Rep. 26, 1727–1733.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bagnoli, S., Fronte, B., Bibbiani, C., Terzibasi Tozzini, E. & Cellerino, A. Quantification of noradrenergic‐, dopaminergic‐, and tectal‐neurons during aging in the short‐lived killifish Nothobranchius furzeri. Aging Cell https://doi.org/10.1111/acel.13689 (2022).

  • Van houcke, J. et al. Modeling neuroregeneration and neurorepair in an aging context: the power of a teleost model. Front. Cell Dev. Biol. 9, 619197 (2021).

    Article  PubMed  Google Scholar 

  • Kishi, S. Functional aging and gradual senesence in zebrafish. Ann. N. Y. Acad. Sci. 1019, 521–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Arslan-Ergul, A., Erbaba, B., Karoglu, E. T., Halim, D. O. & Adams, M. M. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 334, 64–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Traniello, I. M., Sîrbulescu, R. F., Ilieş, I. & Zupanc, G. K. H. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: A novel teleost fish model of negligible senescence. Dev. Neurobiol. 74, 514–530 (2014).

    Article  PubMed  Google Scholar 

  • Liu, S. et al. Resveratrol reduces senescence-associated secretory phenotype by SIRT1/NF-κB pathway in gut of the annual fish Nothobranchius guentheri. Fish Shellfish Immunol. 80, 473–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Genade, T. et al. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4, 223–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, Y. S. & Hsu, C. Y. Honeybee trophocytes and fat cells as target cells for cellular senescence studies. Exp. Gerontol. 46, 233–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva, N. I. & Burg, M. B. High NaCl promotes cellular senescence. Cell Cycle 6, 3108–3113 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ito, T. & Igaki, T. Dissecting cellular senescence and SASP in Drosophila. Inflamm. Regen. 36, 1–8 (2016).

    Article  Google Scholar 

  • Depeux, C. et al. The crustacean Armadillidium vulgare (Latreille, 1804) (Isopoda: Oniscoidea), a new promising model for the study of cellular senescence. J. Crustac. Biol 40, 194–199 (2020).

    Article  Google Scholar 

  • Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev 24, 2463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., Tchkonia, T., Jiang, J., Kirkland, J. L. & Sun, Y. Targeting senescent cells for a healthier aging: challenges and opportunities. Adv. Sci. 7, 2002611 (2020).

    Article  CAS  Google Scholar 

  • Chinta, S. J. et al. Cellular senescence and the aging brain. Exp. Gerontol. 68, 3–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Coppé, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: The dark side of tumor suppression. Ann. Rev. Pathol. 5, 99–118 (2010).

    Article  Google Scholar 

  • Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, G. et al. A senescent cell bystander effect: senescence‐induced senescence. Aging Cell 11, 345–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Prata, L. G. P. L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).

    Article  CAS  PubMed  Google Scholar 

  • de Keizer, P. L. J. The fountain of youth by targeting senescent cells? Trends Mol. Med. 23, 6–17 (2017).

    Article  PubMed  Google Scholar 

  • Krause, A., Conboy, M. J. & Conboy, I. M. in Biology and Engineering of Stem Cell Niches 185–192 (Elsevier, 2017).

  • Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A. & Finch, C. E. GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14, 421–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Porchet, R. et al. Analysis of gial acidic fibrillary protein in the human entorhinal cortex during aging and in Alzheimer’s disease. Proteomics 3, 1476–1485 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu, A. et al. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med. Genomics 9, 5 (2015).

    Article  Google Scholar 

  • Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, B. Y. et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jurisch-Yaksi, N., Yaksi, E. & Kizil, C. Radial glia in the zebrafish brain: functional, structural, and physiological comparison with the mammalian glia. Glia 68, 2451–2470 (2020).

    Article  PubMed  Google Scholar 

  • Zhu, Y. et al. The achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Morsli, S. et al. A p21-GFP zebrafish model of senescence for rapid testing of senolytics in vivo. bioRxiv https://doi.org/10.1101/2022.09.19.506911 (2022).

  • Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wissler Gerdes, E. O., Zhu, Y., Tchkonia, T. & Kirkland, J. L. Discovery, development, and future application of senolytics: theories and predictions. FEBS J. 287, 2418–2427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis‐McDougall, F. C. et al. Aged‐senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, C., Shen, Y., Huang, L., Liu, C. & Wang, J. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J. 35, e21229 (2021).

    CAS  PubMed  Google Scholar 

  • Huang, Y. et al. The impact of senescence on muscle wasting in chronic kidney disease. J. Cachexia. Sarcopenia Muscle 14, 126–141 (2023).

    Article  PubMed  Google Scholar 

  • Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y. et al. Senolytics improve bone forming potential of bone marrow mesenchymal stem cells from aged mice. npj Regen. Med. 6, 34 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H. et al. Senolytics (DQ) mitigates radiation ulcers by removing senescent cells. Front. Oncol. 9, 1576 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Respir. J. 50, 1602367 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Graefe, E. U. et al. Pharmacokinetics and bioavailability of Quercetin glycosides in humans. J. Clin. Pharmacol 41, 492–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Christopher, L. J. et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab. Dispos. 36, 1357–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Coolen, M., Labusch, M., Mannioui, A. & Bally-Cuif, L. Mosaic heterochrony in neural progenitors sustains accelerated brain growth and neurogenesis in the Juvenile Killifish N. furzeri. Curr. Biol. 30, 736–745.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatt, M. P. et al. Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Rep. 17, 259–275 (2022).

    Article  CAS  Google Scholar 

  • Nicaise, A. M., Willis, C. M., Crocker, S. J. & Pluchino, S. Stem cells of the aging brain. Front. Aging Neurosci. 12, 247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimipour, M. et al. Quercetin promotes learning and memory performance concomitantly with neural stem/progenitor cell proliferation and neurogenesis in the adult rat dentate gyrus. Int. J. Dev. Neurosci. 74, 18–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Baral, S., Pariyar, R., Kim, J., Lee, H.-S. & Seo, J. Quercetin-3-O-glucuronide promotes the proliferation and migration of neural stem cells. Neurobiol. Aging 52, 39–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Tchantchou, F. et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J. Alzheimers Dis. 18, 787–798 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kyritsis, N. et al. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338, 1353–1356 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kizil, C., Kyritsis, N. & Brand, M. Effects of inflammation on stem cells: together they strive? EMBO Rep 16, 416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambusi, A. et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat. Neurosci. 25, 1608–1625 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yun, M. H., Davaapil, H. & Brockes, J. P. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife 4, e05505 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Álvarez, S. D. A. et al. Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell 19, e13052 (2020).

    PubMed  Google Scholar 

  • Paramos-de-Carvalho, D. et al. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep 36, 109334 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Novais, E. J. et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun 12, 1–17 (2021).

    Article  Google Scholar 

  • Ota, H. & Kodama, A. Dasatinib plus quercetin attenuates some frailty characteristics in SAMP10 mice. Sci. Rep. 12, 2425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzystyniak, A. et al. Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging (Albany NY) 14, 572 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mariën, V., Van Houcke, J. & Arckens, L. Intracardial perfusion of the African turquoise killifish. Protocols.io https://doi.org/10.17504/protocols.io.b2ryqd7w (2022).

  • Mitchell, D. M., Lovel, A. G. & Stenkamp, D. L. Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J. Neuroinflammation 15, 1–20 (2018).

    Article  Google Scholar 

  • Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Montes, G. S. & Junqueira, L. C. U. The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem. Inst. Oswaldo Cruz 86, 1–11 (1991).

    Article  PubMed  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img