Zephyrnet Logo

Electrical tuning of phase-change antennas and metasurfaces

Date:

  • 1.

    Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Google Scholar 

  • 2.

    Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photon. Rev. 11, 1600295 (2017).

    Google Scholar 

  • 3.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    CAS  Google Scholar 

  • 4.

    Caloz, C. & Deck-Leger, Z.-L. Spacetime metamaterials—Part I: general concepts. IEEE Trans. Antennas Propag. 68, 1569–1582 (2020).

    Google Scholar 

  • 5.

    Holsteen, A. L., Raza, S., Fan, P., Kik, P. G. & Brongersma, M. L. Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358, 1407–1410 (2017).

    CAS  Google Scholar 

  • 6.

    Gao, L. et al. Optics and nonlinear buckling mechanics in large-area, highly stretchable arrays of plasmonic nanostructures. ACS Nano 9, 5968–5975 (2015).

    CAS  Google Scholar 

  • 7.

    Cencillo-Abad, P., Ou, J. Y., Plum, E. & Zheludev, N. I. Electro-mechanical light modulator based on controlling the interaction of light with a metasurface. Sci. Rep. 7, 5405 (2017).

    Google Scholar 

  • 8.

    Afridi, A. et al. Electrically driven varifocal silicon metalens. ACS Photonics 5, 4497–4503 (2018).

    CAS  Google Scholar 

  • 9.

    Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Google Scholar 

  • 10.

    Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

    CAS  Google Scholar 

  • 11.

    Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    CAS  Google Scholar 

  • 12.

    Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    CAS  Google Scholar 

  • 13.

    Iyer, P. P., Pendharkar, M., Palmstrøm, C. J. & Schuller, J. A. III–V heterojunction platform for electrically reconfigurable dielectric metasurfaces. ACS Photonics 6, 1345–1350 (2019).

    CAS  Google Scholar 

  • 14.

    Jun, Y. C. et al. Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013).

    CAS  Google Scholar 

  • 15.

    Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Google Scholar 

  • 16.

    Emboras, A. et al. Atomic scale plasmonic switch. Nano Lett. 16, 709–714 (2016).

    CAS  Google Scholar 

  • 17.

    Di Martino, G., Tappertzhofen, S., Hofmann, S. & Baumberg, J. Nanoscale plasmon-enhanced spectroscopy in memristive switches. Small 12, 1334–1341 (2016).

    Google Scholar 

  • 18.

    Schoen, D. T., Holsteen, A. L. & Brongersma, M. L. Probing the electrical switching of a memristive optical antenna by STEM EELS. Nat. Commun. 7, 12162 (2061).

    Google Scholar 

  • 19.

    Li, Y., van de Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of gap plasmon resonances using a solid-state electrochromic device. Nano Lett. 19, 7988–7995 (2019).

    CAS  Google Scholar 

  • 20.

    Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    Google Scholar 

  • 21.

    Buchnev, O., Ou, J. Y., Kaczmarek, M., Zheludev, N. I. & Fedotov, V. A. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Opt. Express 21, 1633 (2013).

    CAS  Google Scholar 

  • 22.

    Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS  Google Scholar 

  • 23.

    Soares, B. F., Jonsson, F. & Zheludev, N. I. All-optical phase-change memory in a single gallium nanoparticle. Phys. Rev. Lett. 98, 153905 (2007).

    Google Scholar 

  • 24.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 11, 465–476 (2017).

    CAS  Google Scholar 

  • 25.

    Ding, F., Yang, Y. & Bozhevolnyi, S. I. Dynamic metasurfaces using phase-change chalcogenides. Adv. Opt. Mater. 7, 1801709 (2019).

    Google Scholar 

  • 26.

    Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    CAS  Google Scholar 

  • 27.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60–65 (2015).

    Google Scholar 

  • 28.

    Chu, C. H. et al. Active dielectric metasurface based on phase-change medium. Laser Photon. Rev. 10, 986–994 (2016).

    CAS  Google Scholar 

  • 29.

    Abdollahramezani, S. et al. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics 9, 1189–1241 (2020).

    CAS  Google Scholar 

  • 30.

    Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    CAS  Google Scholar 

  • 31.

    Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces. Nano Lett. 19, 3961–3968 (2019).

    CAS  Google Scholar 

  • 32.

    Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Google Scholar 

  • 33.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    CAS  Google Scholar 

  • 34.

    Anbarasu, M. & Wuttig, M. Understanding the structure and properties of phase change materials for data storage applications. J. Indian Inst. Sci. 91, 259–274 (2012).

    Google Scholar 

  • 35.

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    CAS  Google Scholar 

  • 36.

    Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    CAS  Google Scholar 

  • 37.

    Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Google Scholar 

  • 38.

    Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    CAS  Google Scholar 

  • 39.

    Ann-Katrin, U. M. et al. Using low-loss phase-change materials for mid-infrared antenna resonance switching. Nano Lett. 13, 3470–3475 (2013).

    Google Scholar 

  • 40.

    Michel, A. K. U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photonics 1, 833–839 (2014).

    CAS  Google Scholar 

  • 41.

    Alaee, R., Albooyeh, M., Tretyakov, S. & Rockstuhl, C. Phase-change material-based nanoantennas with tunable radiation patterns. Opt. Lett. 41, 4099–4102 (2016).

    CAS  Google Scholar 

  • 42.

    Carrillo, S. G.-C., Alexeev, A. M., Au, Y.-Y. & Wright, C. D. Reconfigurable phase-change meta-absorbers with on-demand quality factor control. Opt. Express 26, 25567 (2018).

    CAS  Google Scholar 

  • 43.

    Ruiz de Galarreta, C. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476 (2020).

    Google Scholar 

  • 44.

    Rudé, M., Simpson, R. E., Quidant, R., Pruneri, V. & Renger, J. Active control of surface plasmon waveguides with a phase change material. ACS Photonics 2, 669–674 (2015).

    Google Scholar 

  • 45.

    de Galarreta, C. R. et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared. Adv. Funct. Mater. 28, 1704993 (2018).

    Google Scholar 

  • 46.

    Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).

    CAS  Google Scholar 

  • 47.

    Carrillo, S. G. et al. A nonvolatile phase‐change metamaterial color display. Adv. Opt. Mater. 7, 1801782 (2019).

    Google Scholar 

  • 48.

    Leitis, A. et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

    CAS  Google Scholar 

  • 49.

    Liang, G. et al. Comparison of optical and electrical transient response during nanosecond laser pulse-induced phase transition of Ge2Sb2Te5 thin films. Chem. Phys. Lett. 507, 203–207 (2011).

    CAS  Google Scholar 

  • 50.

    Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019).

    CAS  Google Scholar 

  • 51.

    Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M. & Wickramasinghe, H. K. Ultra-high-density phase-change storage and memory. Nat. Mater. 5, 383–387 (2006).

    CAS  Google Scholar 

  • 52.

    Ahn, C. et al. Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage. J. Appl. Phys. 110, 114520 (2011).

    Google Scholar 

  • 53.

    Kato, K., Kuwahara, M., Kawashima, H., Tsuruoka, T. & Tsuda, H. Current-driven phase-change optical gate switch using indium-tin-oxide heater. Appl. Phys. Express 10, 072201 (2017).

    Google Scholar 

  • 54.

    Au, Y.-Y., Bhaskaran, H. & Wright, C. D. Phase-change devices for simultaneous optical-electrical applications. Sci. Rep. 7, 9688 (2017).

    Google Scholar 

  • 55.

    Zheng, J. et al. Nonvolatile electrically peconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater. 32, 2001218 (2020).

    CAS  Google Scholar 

  • 56.

    Søndergaard, T. & Bozhevolnyi, S. I. Strip and gap plasmon polariton optical resonators. Phys. Status Solidi 245, 9–19 (2008).

    Google Scholar 

  • 57.

    Chen, Y. et al. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry. Appl. Phys. Express 10, 105601 (2017).

    Google Scholar 

  • 58.

    Suh, D.-S. et al. Critical quenching speed determining phase of Ge2Sb2Te5 in phase-change memory. In Proc. International Electron Devices Meeting (IEEE, 2006).

  • 59.

    Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–76 (2021).

    CAS  Google Scholar 

  • 60.

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    CAS  Google Scholar 

  • 61.

    Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat Nanotechnol. https://doi.org/10.1038/s41565-021-00881-9 (2021).

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00882-8

    spot_img

    Latest Intelligence

    spot_img