Zephyrnet Logo

Viscoelastic surface electrode arrays to interface with viscoelastic tissues

Date:

  • 1.

    Tolstosheeva, E. et al. A multi-channel, flex-rigid ECoG microelectrode array for visual cortical interfacing. Sensors (Basel) 15, 832–854 (2015).

    Article  Google Scholar 

  • 2.

    Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  Google Scholar 

  • 3.

    Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, e1706520 (2018).

    Article  Google Scholar 

  • 4.

    Konerding, W. S., Froriep, U. P., Kral, A. & Baumhoff, P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci. Rep. 8, 1–14 (2018).

    CAS  Article  Google Scholar 

  • 5.

    Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  Article  Google Scholar 

  • 7.

    Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Budday, S. et al. Region- and loading-specific finite viscoelasticity of human brain tissue. Proc. Appl. Math. Mech. 18, 3–4 (2018).

    Google Scholar 

  • 9.

    Wang, Z., Golob, M. J. & Chesler, N. C. in Viscoelastic and Viscoplastic Materials (InTech: 2016); https://doi.org/10.5772/64169

  • 10.

    Boyle, N. G. & Shivkumar, K. Epicardial interventions in electrophysiology. Circulation 126, 1752–1769 (2012).

    Article  Google Scholar 

  • 11.

    Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  Google Scholar 

  • 13.

    Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

    Article  Google Scholar 

  • 14.

    Bramini, M. et al. Interfacing graphene-based materials with neural cells. Front. Syst. Neurosci. 12, https://doi.org/10.3389/fnsys.2018.00012 (2018).

  • 15.

    Kostarelos, K. & Novoselov, K. S. Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Martín, C., Kostarelos, K., Prato, M. & Bianco, A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem. Commun. 55, 5540–5546 (2019).

    Article  Google Scholar 

  • 17.

    Pampaloni, N. P., Giugliano, M., Scaini, D., Ballerini, L. & Rauti, R. Advances in nano neuroscience: from nanomaterials to nanotools. Front. Neurosci. 12, 953 (2019).

    Article  Google Scholar 

  • 18.

    Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  Google Scholar 

  • 19.

    Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    CAS  Article  Google Scholar 

  • 20.

    Yuan, X., Wei, Y., Chen, S., Wang, P. & Liu, L. Bio-based graphene/sodium alginate aerogels for strain sensors. RSC Adv. 6, 64056–64064 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Golafshan, N., Kharaziha, M. & Fathi, M. Tough and conductive hybrid graphene-PVA: alginate fibrous scaffolds for engineering neural construct. Carbon 111, 752–763 (2017).

    CAS  Article  Google Scholar 

  • 22.

    Lin, X. et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nat. Biomed. Eng. 3, 632–643 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Masvidal-Codina, E. et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Green, R. Elastic and conductive hydrogel electrodes. Nat. Biomed. Eng. 3, 9–10 (2019).

    Article  Google Scholar 

  • 26.

    Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    CAS  Article  Google Scholar 

  • 27.

    Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Lee, K. Y. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, e1706846 (2018).

    Article  Google Scholar 

  • 31.

    Tondera, C. et al. Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping. Small 15, 1901406 (2019).

    Article  Google Scholar 

  • 32.

    Kim, N. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020).

    Article  Google Scholar 

  • 33.

    Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  Google Scholar 

  • 34.

    Feig, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018).

    Article  Google Scholar 

  • 35.

    Vicente, J., Costa, P., Lanceros-Mendez, S., Abete, J. M. & Iturrospe, A. Electromechanical properties of PVDF-based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Materials (Basel) 12, 3545 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Chen, Z. et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011).

    CAS  Article  Google Scholar 

  • 37.

    Bhagavatheswaran, E. S. et al. Construction of an interconnected nanostructured carbon black network: development of highly stretchable and robust elastomeric conductors. J. Phys. Chem. C. 119, 21723–21731 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E. & Winey, K. I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000).

    CAS  Article  Google Scholar 

  • 39.

    Chen, Y. et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection. Nanomaterials 9, 1737 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Doney, E. et al. 3D printing of preclinical X-ray computed tomographic data sets. J. Vis. Exp. 22, e50250 (2013).

    Google Scholar 

  • 41.

    Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    CAS  Article  Google Scholar 

  • 42.

    Topsoe, H. Geometric Factors in Four Point Resistivity Measurement. Bulletin No. 472-13 (IISERKOL, 1966). http://four-point-probes.com/haldor-topsoe-geometric-factors-in-four-point-resistivity-measurement/

  • 43.

    Tringides, C. & Vachicouras, N. Impedance spectra and cyclic voltammetry analysis. Harvard Dataverse, V1 (2021); https://doi.org/10.7910/DVN/8K77QG

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00926-z

    spot_img

    Latest Intelligence

    spot_img