Zephyrnet Logo

Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors

Date:

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article 

    Google Scholar
     

  • Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article 

    Google Scholar
     

  • Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol 14, 156–160 (2018).

    Article 

    Google Scholar
     

  • Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, 1904765 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mun, J. et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. An intrinsically stretchable high‐performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Suo, Z., Vlassak, J. & Wagner, S. Micromechanics of macroelectronics. China Particuol. 3, 321–328 (2005).

    Article 

    Google Scholar
     

  • Xiang, Y., Li, T., Suo, Z. & Vlassak, J. J. High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).

    Article 

    Google Scholar
     

  • Lu, N., Wang, X., Suo, Z. & Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article 

    Google Scholar
     

  • Lee, S.-Y. et al. Selective crack suppression during deformation in metal films on polymer substrates using electron beam irradiation. Nat. Commun. 10, 4454 (2019).

    Article 

    Google Scholar
     

  • Yang, J., Bai, R. & Suo, Z. Topological adhesion of wet materials. Adv. Mater. 30, 1800671 (2018).

    Article 

    Google Scholar
     

  • Liu, Q., Nian, G., Yang, C., Qu, S. & Suo, Z. Bonding dissimilar polymer networks in various manufacturing processes. Nat. Commun. 9, 846 (2018).

    Article 

    Google Scholar
     

  • Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190–196 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article 

    Google Scholar
     

  • Wang, G. N. et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem. Mater. 31, 6465–6475 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 30, 1706846 (2018).

    Article 

    Google Scholar
     

  • Sun, J. Y. et al. Inorganic islands on a highly stretchable polyimide substrate. J. Mater. Res. 24, 3338–3342 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. et al. Directly probing the fracture behavior of ultrathin polymeric films. ACS Polym. Au 1, 16–29 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article 

    Google Scholar
     

  • Ambrico, J. M. & Begley, M. R. The role of initial flaw size, elastic compliance and plasticity in channel cracking of thin films. Thin Solid Films 419, 144–153 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Beuth, J. L. & Klingbeil, N. W. Cracking of thin films bonded to elastic plastic substrates. J. Mech. Phys. Solids 44, 1411–1428 (1996).

    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?