Zephyrnet Logo

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps

Date:

Home > Press > Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps

Electrical current and laser light combine at a gold nanogap to prompt a dramatic burst of light. The phenomenon could be useful for nanophotonic switches in computer chips and for advanced photocatalysts. (Credit: Natelson Research Group/Rice University)
Electrical current and laser light combine at a gold nanogap to prompt a dramatic burst of light. The phenomenon could be useful for nanophotonic switches in computer chips and for advanced photocatalysts. (Credit: Natelson Research Group/Rice University)

Abstract:
If you’re looking for one technique to maximize photon output from plasmons, stop. It takes two to wrangle.

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps


Houston, TX | Posted on March 18th, 2021

Rice University physicists came across a phenomenon that boosts the light from a nanoscale device more than 1,000 times greater than they anticipated.

When looking at light coming from a plasmonic junction, a microscopic gap between two gold nanowires, there are conditions in which applying optical or electrical energy individually prompted only a modest amount of light emission. Applying both together, however, caused a burst of light that far exceeded the output under either individual stimulus.

The researchers led by Rice physicist Douglas Natelson and lead authors Longji Cui and Yunxuan Zhu found the effect while following up experiments that discovered driving current through the gap increased the number of light-emitting “hot carrier” electrons in the electrodes.

Now they know that adding energy from a laser to the same junction makes it even brighter. The dramatic enhancement could be employed to make nanophotonic switches for computer chips and for advanced photocatalysts.

The details appear in the American Chemical Society journal Nano Letters.

“It’s been known for a long time that it’s possible to get a light emission from these tiny structures,” Natelson said. “In our previous work, we showed that plasmons play an important role in generating very hot charge carriers, equivalent to a couple of thousand degrees.”

Plasmons are ripples of charge that carry energy, and when triggered, flow across the surface of certain metals, including gold. In the voltage-driven mechanism, electrons tunnel through the gap, exciting plasmons, which leads to hot electrons recombining with electron “holes” and emitting photons in the process.

Even though the effect seemed dramatic at the time, it paled in comparison to the new discovery.

“I like the idea of ‘1+1=1,000,” Natelson said. “You do two things, each of which doesn’t give you much light in this energy range, but together, holy cow! There’s a lot of light coming out.”

The specific mechanisms are worthy of further study, he said. One possibility is that optical and electrical drives combine to enhance the generation of hot electrons. An alternative is that light emission gets a boost via anti-Stokes electronic Raman scattering. In that process, light input prompts already excited hot carriers to relax back to their ground states, releasing more photons.

“Something interesting is going on there, where each of these individual excitations is not enough to give you the amount of light coming out,” Natelson said. “But put them together and the effective temperature is much higher. That’s one possible explanation: that the light output is an exponential function of the temperature. Reaching that effective temperature takes hundreds of femtoseconds.

“The Raman mechanism is more subtle, where light comes in, grabs energy from the voltage, and even stronger light leaves,” he said. “That happens even faster, so a time-dependent experiment could probably help us figure out the dominant mechanism.

“The reason it’s neat is that you can, in principle, couple the electrical drive and light coming in to do all kinds of things,” Natelson said. “If the hot carrier picture is right, there’s the possibility of doing some interesting chemistry.”

Co-authors of the paper are Peter Nordlander, the Wiess Chair in Physics and Astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering at Rice, and Massimiliano Di Ventra, a professor of physics at the University of California, San Diego. Cui, a former postdoctoral fellow at Rice, is now an assistant professor of mechanical engineering and materials science and engineering at the University of Colorado Boulder. Zhu is a graduate student at Rice. Natelson is chair and a professor of physics and astronomy and a professor of electrical and computer engineering and of materials science and nanoengineering.

The J. Evans Attwell Welch Fellowship, Rice’s Smalley-Curl Institute, the Robert A. Welch Foundation, the University of Colorado and the National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Rice lab’s bright idea is pure gold:

Natelson Research Group:

Longji Cui:

Nordlander Nanophotonics Group:

Massimiliano Di Ventra:

Rice Department of Physics and Astronomy:

Wiess School of Natural Sciences:

Related News Press

News and information

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Chemistry

Boosting the efficiency of carbon capture and conversion systems: New design could speed reaction rates in electrochemical systems for pulling carbon out of power plant emissions January 25th, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Chemists synthesize ‘flat’ silicon compounds: The molecules generated at the University of Bonn are very stable despite their unusual spatial shape December 25th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Nanotech scientists create world’s smallest origami bird March 17th, 2021

A COSMIC approach to nanoscale science: Instrument at Berkeley Lab’s Advanced Light Source achieves world-leading resolution of nanomaterials March 5th, 2021

Arrowhead Pharmaceuticals Files IND to Begin Phase 2b Study of ARO-APOC3 in Patients with Severe Hypertriglyceridemia March 2nd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Possible Futures

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Chip Technology

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

GLOBALFOUNDRIES 22FDX RF Solution Provides the Basis for Next-Gen mmWave Automotive Radar: Next-generation auto radar technology, based on GF’s 22FDX RF solution, will help make vehicles smarter and roads even safer than today March 10th, 2021

CEA-Leti Envisions Widespread Use of LiDAR Systems Based on Integrated Optical Phased Arrays (OPAs): OPAs with Solid-State Beam Steering Can Reduce the Cost and Size of LiDAR Systems & Improve Performance; Results Reported at Photonics West 2021 March 9th, 2021

Optical computing/Photonic computing

New study investigates photonics for artificial intelligence and neuromorphic computing February 1st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Discoveries

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Announcements

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanotech scientists create world’s smallest origami bird March 17th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cells’ output February 26th, 2021

Photonics/Optics/Lasers

Compression or strain – the material expands always the same March 10th, 2021

CEA-Leti Envisions Widespread Use of LiDAR Systems Based on Integrated Optical Phased Arrays (OPAs): OPAs with Solid-State Beam Steering Can Reduce the Cost and Size of LiDAR Systems & Improve Performance; Results Reported at Photonics West 2021 March 9th, 2021

Instrument at BESSY II shows how light activates MoS2 layers to become catalysts March 8th, 2021

Instrument at BESSY II shows how light activates MoS2 layers to become catalysts March 8th, 2021

Checkout PrimeXBT
Trade with the Official CFD Partners of AC Milan
Source: http://www.nanotech-now.com/news.cgi?story_id=56605

spot_img

Latest Intelligence

spot_img