Zephyrnet Logo

Substrate-independent and widely applicable deposition of antibacterial coatings

Date:

    • Arciola C.R.
    • et al.

    Implant infections: adhesion, biofilm formation and immune evasion.

    Nat. Rev. Microbiol. 2018; 16: 397-409

    • Singh A.
    • Dubey A.K.

    Various biomaterials and techniques for improving antibacterial response.

    ACS Appl. Bio Mater. 2018; 1: 3-20

    • Veerachamy S.
    • et al.

    Bacterial adherence and biofilm formation on medical implants: a review.

    Proc. Inst. Mech. Eng. H. 2014; 228: 1083-1099

    • Salwiczek M.
    • et al.

    Emerging rules for effective antimicrobial coatings.

    Trends Biotechnol. 2014; 32: 82-90

  • Cloutier, M. et al. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33, 637–652.

    • Yu Q.
    • et al.

    Dual-function antibacterial surfaces for biomedical applications.

    Acta Biomater. 2015; 16: 1-13

    • Ding X.
    • et al.

    Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens.

    Adv. Funct. Mater. 2018; 281802140

    • Wei T.
    • et al.

    Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way.

    Adv. Healthc. Mater. 2019; 81801381

    • Wang Y.
    • et al.

    Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets.

    Proc. Natl. Acad. Sci. U. S. A. 2017; 114: E5094-E5102

    • Veiseh O.
    • Vegas A.J.

    Domesticating the foreign body response: Recent advances and applications.

    Adv. Drug Deliv. Rev. 2019; 144: 148-161

    • Chandorkar Y.
    • et al.

    The foreign body response demystified.

    ACS Biomater. Sci. Eng. 2019; 5: 19-44

    • Benčina M.
    • et al.

    Use of plasma technologies for antibacterial surface properties of metals.

    Molecules. 2021; 26: 1418

    • Fu Y.
    • et al.

    Polydopamine antibacterial materials.

    Mater. Horiz. 2021; 8: 1618-1633

    • Singh I.
    • et al.

    Recent advances in a polydopamine-mediated antimicrobial adhesion system.

    Front. Microbiol. 2021; 11607099

    • Sardella E.
    • et al.

    Non-equilibrium plasma processing for the preparation of antibacterial surfaces.

    Materials (Basel). 2016; 9: 515

    • Wei Q.
    • Haag R.

    Universal polymer coatings and their representative biomedical applications.

    Mater. Horiz. 2015; 2: 567-577

    • Nikiforov A.
    • et al.

    Plasma technology in antimicrobial surface engineering.

    J. Appl. Phys. 2022; 131011102

    • Zhu X.
    • Jun Loh X.

    Layer-by-layer assemblies for antibacterial applications.

    Biomater. Sci. 2015; 3: 1505-1518

    • Fattah-alhosseini A.
    • et al.

    On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: a review.

    Ceram. Int. 2020; 46: 20587-20607

    • Lam M.
    • et al.

    Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces.

    Acta Biomater. 2021; 121: 68-88

    • Macgregor M.
    • Vasilev K.

    Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines.

    Materials. 2019; 12: 191

    • Ryu J.H.
    • et al.

    Polydopamine surface chemistry: a decade of discovery.

    ACS Appl. Mater. Interfaces. 2018; 10: 7523-7540

    • Osman R.B.
    • Swain M.V.

    A critical review of dental implant materials with an emphasis on titanium versus zirconia.

    Materials (Basel). 2015; 8: 932-958

    • Teo A.J.T.
    • et al.

    Polymeric biomaterials for medical implants and devices.

    ACS Biomater. Sci. Eng. 2016; 2: 454-472

    • Jiang S.
    • Cao Z.

    Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications.

    Adv. Mater. 2010; 22: 920-932

    • Li L.
    • et al.

    Mussel-inspired antifouling coatings bearing polymer loops.

    Chem. Commun. 2015; 51: 15780-15783

    • Morgese G.
    • et al.

    Chemical design of non-ionic polymer brushes as biointerfaces: poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG.

    Angew. Chem. Int. Ed. 2018; 57: 11667-11672

    • Busscher H.J.
    • et al.

    Biomaterial-associated infection: locating the finish line in the race for the surface.

    Sci. Transl. Med. 2012; 4: 1-10

    • Borjihan Q.
    • et al.

    Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities.

    Biomater. Sci. 2019; 7: 3334-3347

    • Chen P.
    • et al.

    An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings.

    Sci. Adv. 2022; 8eabl8812

    • Ren L.
    • et al.

    Preparation and characterization of the catechol functionalized chitosan-Ag NPs deposited onto titanium surface.

    Surf. Coat. Technol. 2021; 420127319

    • Cheng H.
    • et al.

    Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis.

    ACS Appl. Mater. Interfaces. 2017; 9: 11428-11439

    • Yuan P.
    • et al.

    Substrate-independent coating with persistent and stable antifouling and antibacterial activities to reduce bacterial infection for various implants.

    Adv. Healthc. Mater. 2019; 81801423

    • Ko M.-P.
    • Huang C.-J.

    A versatile approach to antimicrobial coatings via metal-phenolic networks.

    Colloids Surf. B: Biointerfaces. 2020; 187110771

    • Zheng H.-T.
    • et al.

    Pegylated metal-phenolic networks for antimicrobial and antifouling properties.

    Langmuir. 2019; 35: 8829-8839

    • Li C.
    • et al.

    Lubricin-inspired loop zwitterionic peptide for fabrication of superior antifouling surfaces.

    ACS Appl. Mater. Interfaces. 2021; 13: 41978-41986

    • Kim S.
    • et al.

    Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications.

    ACS Appl. Mater. Interfaces. 2018; 10: 7626-7631

    • Li N.
    • et al.

    Universal strategy for efficient fabrication of blood compatible surfaces via polydopamine-assisted surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization of zwitterions.

    ACS Appl. Mater. Interfaces. 2020; 12: 12337-12344

    • Shi Y.
    • et al.

    A versatile and rapid coating method via a combination of plasma polymerization and surface-initiated SET-LRP for the fabrication of low-fouling surfaces.

    J. Polym. Sci. A Polym. Chem. 2017; 55: 2527-2536

    • Hirsch U.
    • et al.

    Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis.

    Appl. Surf. Sci. 2018; 436: 207-216

    • Dhand C.
    • et al.

    Mussel-inspired durable antimicrobial contact lenses: the role of covalent and noncovalent attachment of antimicrobials.

    ACS Biomater. Sci. Eng. 2020; 6: 3162-3173

    • Griesser S.S.
    • et al.

    Antimicrobial peptides grafted onto a plasma polymer interlayer platform: performance upon extended bacterial challenge.

    Coatings. 2021; 11: 68

    • Akhavan B.
    • et al.

    Plasma activated coatings with dual action against fungi and bacteria.

    Appl. Mater. Today. 2018; 12: 72-84

    • Permyakova E.S.
    • et al.

    Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization.

    Mater. Des. 2018; 153: 60-70

    • Zhou C.
    • et al.

    Grafting antibiofilm polymer hydrogel film onto catheter by SARA SI-ATRP.

    J. Biomater. Sci. Polym. Ed. 2018; 29: 2106-2123

    • Chien H.-W.
    • Chiu T.-H.

    Stable N-halamine on polydopamine coating for high antimicrobial efficiency.

    Eur. Polym. J. 2020; 130109654

    • Mora-Boza A.
    • et al.

    Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition.

    Front. Chem. Sci. Eng. 2019; 13: 330-339

    • Chan Y.W.
    • et al.

    Plasma polymerized carvone as an antibacterial and biocompatible coating.

    Mater. Sci. Eng. C. 2016; 68: 861-871

    • Kord Forooshani P.
    • et al.

    Antibacterial properties of mussel-inspired polydopamine coatings prepared by a simple two-step shaking-assisted method.

    Front. Chem. 2019; 7: 631

    • Michl T.D.
    • et al.

    Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects.

    Chem. Commun. 2015; 51: 7058-7060

    • Lo Porto C.
    • et al.

    Aerosol assisted atmospheric pressure PE-CVD of drug containing nano-capsules.

    Jpn. J. Appl. Phys. 2019; 59SA0801

    • Palumbo F.
    • et al.

    Plasma-deposited nanocapsules containing coatings for drug delivery applications.

    ACS Appl. Mater. Interfaces. 2018; 10: 35516-35525

    • Thukkaram M.
    • et al.

    Investigation of Ag/a-C:H nanocomposite coatings on titanium for orthopedic applications.

    ACS Appl. Mater. Interfaces. 2020; 12: 23655-23666

    • Wang L.
    • et al.

    Bi-functional titanium-polydopamine-zinc coatings for infection inhibition and enhanced osseointegration.

    RSC Adv. 2019; 9: 2892-2905

    • Jia L.
    • et al.

    Polydopamine-assisted surface modification for orthopaedic implants.

    J. Orthop. Transl. 2019; 17: 82-95

    • Stein S.
    • et al.

    Osseointegration of titanium implants with a novel silver coating under dynamic loading.

    Eur. Cells Mater. 2020; 39: 249-259

    • Sadrearhami Z.
    • et al.

    Antibiofilm nitric oxide-releasing polydopamine coatings.

    ACS Appl. Mater. Interfaces. 2019; 11: 7320-7329

    • Fan Y.-J.
    • et al.

    Development of antimicrobial and antifouling universal coating via rapid deposition of polydopamine and zwitterionization.

    Langmuir. 2019; 35: 1642-1651

    • Qian H.
    • et al.

    Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties.

    Mater. Sci. Eng. C. 2017; 80: 566-577

    • Wang B.-B.
    • et al.

    Preparation of highly effective antibacterial coating with polydopamine/chitosan/silver nanoparticles via simple immersion.

    Prog. Org. Coat. 2020; 149105967

    • Moreno-Couranjou M.
    • et al.

    Anti-biofouling and antibacterial surfaces via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process.

    J. Mater. Chem. B. 2018; 6: 614-623

    • Kefallinou D.
    • et al.

    Optimization of antibacterial properties of “hybrid” metal-sputtered superhydrophobic surfaces.

    Coatings. 2020; 10: 25

    • Jin Y.
    • et al.

    A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties.

    Appl. Surf. Sci. 2020; 528146539

    • Xu X.
    • et al.

    Facile and versatile strategy for construction of anti-inflammatory and antibacterial surfaces with polydopamine-mediated liposomes releasing dexamethasone and minocycline for potential implant applications.

    ACS Appl. Mater. Interfaces. 2017; 9: 43300-43314

    • Yuan H.
    • et al.

    Multiple types of hydroxyl-rich cationic derivatives of PGMA for broad-spectrum antibacterial and antifouling coatings.

    Polym. Chem. 2016; 7: 5709-5718

    • Song J.
    • et al.

    A superhydrophobic and antibacterial surface coated on cotton fabrics by polydopamine.

    Fibers Polym. 2019; 20: 1380-1386

    • Gao Q.
    • et al.

    Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings.

    Polym. Chem. 2017; 8: 6386-6397

    • Zeng Q.
    • et al.

    Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants.

    Biomacromolecules. 2018; 19: 2805-2811

    • Asha A.B.
    • et al.

    Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties.

    Langmuir. 2019; 35: 1621-1630

    • Alves D.
    • et al.

    Design of an antifungal surface embedding liposomal amphotericin B through a mussel adhesive-inspired coating strategy.

    Front. Chem. 2019; 7: 431

    • Pan F.
    • et al.

    Interfacial assembly inspired by marine mussels and antifouling effects of polypeptoids: a neutron reflection study.

    Langmuir. 2020; 36: 12309-12318

    • Wei T.
    • et al.

    Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities.

    ACS Appl. Mater. Interfaces. 2017; 9: 37511-37523

    • Vasilev K.

    Nanoengineered antibacterial coatings and materials: a perspective.

    Coatings. 2019; 9: 654

    • Kumari S.
    • et al.

    Engineered spider silk-based 2D and 3D materials prevent microbial infestation.

    Mater. Today. 2020; 41: 21-33

    • Yang Z.
    • et al.

    Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo.

    Biomaterials. 2021; 269120534

    • Ibrahim J.
    • et al.

    Atmospheric pressure dielectric barrier discharges for the deposition of organic plasma polymer coatings for biomedical application.

    Plasma Chem. Plasma Process. 2020; 41: 47-83

    • Vandenbossche M.
    • Hegemann D.

    Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: an overview.

    Curr. Opinion Solid State Mater. Sci. 2018; 22: 26-38

    • Schlaich C.
    • et al.

    Mussel-inspired polymer-based universal spray coating for surface modification: fast fabrication of antibacterial and superhydrophobic surface coatings.

    Adv. Mater. Interfaces. 2018; 51701254

    • Malakooti R.
    • et al.

    Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films.

    Adv. Mater. 2006; 18: 2189-2194

    • Bewilogua K.
    • et al.

    Surface technology for automotive engineering.

    CIRP Ann. 2009; 58: 608-627

    • Bogaerts A.
    • et al.

    Gas discharge plasmas and their applications.

    Spectrochim. Acta B At. Spectrosc. 2002; 57: 609-658

    • Jang H.J.
    • et al.

    A review of plasma synthesis methods for polymer films and nanoparticles under atmospheric pressure conditions.

    Polymers. 2021; 13: 2267

    • Gristina A.G.

    Biomaterial-centered infection: microbial adhesion versus tissue integration.

    Science (New York, N.Y.). 1987; 237: 1588-1595

    • Erathodiyil N.
    • et al.

    Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices.

    Mater. Today. 2020; 38: 84-98

    • Yesilyurt V.
    • et al.

    A facile and versatile method to endow biomaterial devices with zwitterionic surface coatings.

    Adv. Healthc. Mater. 2017; 61601091

    • Xie X.
    • et al.

    Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer.

    Nat. Biomed. Eng. 2018; 2: 894-906

    • Golabchi A.
    • et al.

    Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants.

    Biomaterials. 2019; 225119519

    • Zhang L.
    • et al.

    Zwitterionic hydrogels implanted in mice resist the foreign-body reaction.

    Nat. Biotechnol. 2013; 31: 553-556

    • Tan Z.
    • et al.

    Antibacterial efficacy and cytotoxicity of low intensity direct current activated silver–titanium implant system prototype.

    BioMetals. 2017; 30: 113-125

    • Ellinas K.
    • et al.

    Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: a review.

    Adv. Colloid Interf. Sci. 2017; 250: 132-157

    • Lowe S.
    • et al.

    Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates.

    Polym. Chem. 2015; 6: 198-212

    • Charnley M.
    • et al.

    Designed polymer structures with antifouling–antimicrobial properties.

    React. Funct. Polym. 2011; 71: 329-334

    • Liu M.
    • et al.

    Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications.

    Nanoscale. 2016; 8: 16819-16840

    • Statz A.R.
    • et al.

    Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry.

    Soft Matter. 2008; 4: 131-139

    • Vasilev K.
    • et al.

    Substrate influence on the initial growth phase of plasma-deposited polymer films.

    Chem. Commun. 2009; 24: 3600-3602

    • Taheri S.
    • et al.

    Substrate independent silver nanoparticle based antibacterial coatings.

    Biomaterials. 2014; 35: 4601-4609

    • Chen R.T.
    • et al.

    Surface “click” chemistry on brominated plasma polymer thin films.

    Langmuir. 2010; 26: 3388-3393

    • Siow K.S.
    • et al.

    Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review.

    Plasma Process. Polym. 2006; 3: 392-418

    • Grumezescu V.
    • et al.

    Antimicrobial applications of MAPLE processed coatings based on PLGA and lincomycin functionalized magnetite nanoparticles.

    Appl. Surf. Sci. 2019; 484: 587-599

  • spot_img

    Latest Intelligence

    spot_img