Zephyrnet Logo

State Preparation Boosters for Early Fault-Tolerant Quantum Computation

Date:

Guoming Wang1, Sukin Sim2, and Peter D. Johnson2

1Zapata Computing Canada Inc., 25 Adelaide St E, Suite 1500, Toronto, ON M5C 3A1, Canada
2Zapata Computing Inc., 100 Federal Street, 20th Floor, Boston, MA 02110, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum computing is believed to be particularly useful for the simulation of chemistry and materials, among the various applications. In recent years, there have been significant advancements in the development of near-term quantum algorithms for quantum simulation, including VQE and many of its variants. However, for such algorithms to be useful, they need to overcome several critical barriers including the inability to prepare high-quality approximations of the ground state. Current challenges to state preparation, including barren plateaus and the high-dimensionality of the optimization landscape, make state preparation through ansatz optimization unreliable. In this work, we introduce the method of ground state boosting, which uses a limited-depth quantum circuit to reliably increase the overlap with the ground state. This circuit, which we call a booster, can be used to augment an ansatz from VQE or be used as a stand-alone state preparation method. The booster converts circuit depth into ground state overlap in a controllable manner. We numerically demonstrate the capabilities of boosters by simulating the performance of a particular type of booster, namely the Gaussian booster, for preparing the ground state of $N_2$ molecular system. Beyond ground state preparation as a direct objective, many quantum algorithms, such as quantum phase estimation, rely on high-quality state preparation as a subroutine. Therefore, we foresee ground state boosting and similar methods as becoming essential algorithmic components as the field transitions into using early fault-tolerant quantum computers.

► BibTeX data

► References

[1] Alán Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-Gordon. Simulated quantum computation of molecular energies. Science, 309(5741):1704–1707, 2005.
https:/​/​doi.org/​10.1126/​science.1113479

[2] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya, et al. Quantum chemistry in the age of quantum computing. Chemical Reviews, 119(19):10856–10915, 2019.
https:/​/​doi.org/​10.1021/​acs.chemrev.8b00803

[3] Ivan Kassal, Stephen P Jordan, Peter J Love, Masoud Mohseni, and Alán Aspuru-Guzik. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105(48):18681–18686, 2008.
https:/​/​doi.org/​10.1073/​pnas.0808245105

[4] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and quantum computation. Number 47. American Mathematical Society, 2002.

[5] Yimin Ge, Jordi Tura, and J Ignacio Cirac. Faster ground state preparation and high-precision ground energy estimation with fewer qubits. Journal of Mathematical Physics, 60(2):022202, 2019.
https:/​/​doi.org/​10.1063/​1.5027484

[6] Lin Lin and Yu Tong. Heisenberg-limited ground state energy estimation for early fault-tolerant quantum computers. PRX Quantum 3(1):010318, 2022.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010318

[7] Emanuel Knill, Gerardo Ortiz, and Rolando D Somma. Optimal quantum measurements of expectation values of observables. Physical Review A, 75(1):012328, 2007.
https:/​/​doi.org/​10.1103/​PhysRevA.75.012328

[8] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5:4213, 2014.
https:/​/​doi.org/​10.1038/​ncomms5213

[9] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[10] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1):1–6, 2018.
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[11] Sukin Sim, Jonathan Romero, Jérôme F Gonthier, and Alexander A Kunitsa. Adaptive pruning-based optimization of parameterized quantum circuits. Quantum Science and Technology, 6(2):025019, 2021.
https:/​/​doi.org/​10.1088/​2058-9565/​abe107

[12] Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean, Charles Moussa, Thomas Back, Vedran Dunjko, and Thomas E. O’Brien. Performance comparison of optimization methods on variational quantum algorithms. arXiv preprint arXiv:2111.13454, 2021.
https:/​/​doi.org/​10.48550/​arXiv.2111.13454
arXiv:2111.13454

[13] David Poulin and Pawel Wocjan. Preparing ground states of quantum many-body systems on a quantum computer. Physical Review Letters, 102(13):130503, 2009.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.130503

[14] Lin Lin and Yu Tong. Near-optimal ground state preparation. Quantum, 4:372, 2020.
https:/​/​doi.org/​10.22331/​q-2020-12-14-372

[15] Phillip WK Jensen, Lasse Bjørn Kristensen, Jakob S Kottmann, and Alán Aspuru-Guzik. Quantum computation of eigenvalues within target intervals. Quantum Science and Technology, 6(1):015004, 2020.
https:/​/​doi.org/​10.1088/​2058-9565/​abc096

[16] Anurag Anshu, David Gosset, Karen J Morenz Korol, and Mehdi Soleimanifar. Improved approximation algorithms for bounded-degree local hamiltonians. Physical Review Letters, 127(25):250502, 2021.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.250502

[17] Mario Motta, Chong Sun, Adrian TK Tan, Matthew J O’Rourke, Erika Ye, Austin J Minnich, Fernando GSL Brandão, and Garnet Kin-Lic Chan. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nature Physics, 16(2):205–210, 2020.
https:/​/​doi.org/​10.1038/​s41567-019-0704-4

[18] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C Benjamin, and Xiao Yuan. Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Information, 5(1):1–6, 2019.
https:/​/​doi.org/​10.1038/​s41534-019-0187-2

[19] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch. Filtering variational quantum algorithms for combinatorial optimization. Quantum Science and Technology, 7(1):015021, 2021.
https:/​/​doi.org/​10.1088/​2058-9565/​ac3e54

[20] Min-Quan He, Dan-Bo Zhang, and Z. D. Wang. Quantum Gaussian filter for exploring ground-state properties. Physical Review A, 106(3):032420, 2022.
https:/​/​doi.org/​10.1103/​PhysRevA.106.032420

[21] Yulong Dong, Lin Lin, and Yu Tong. Ground state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. arXiv preprint arXiv:2204.05955, 2022.
https:/​/​doi.org/​10.48550/​arXiv.2204.05955
arXiv:2204.05955

[22] Jakob S. Kottmann, Philipp Schleich, Teresa Tamayo-Mendoza, and Alán Aspuru-Guzik. Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach. The Journal of Physical Chemistry Letters, 12(1):663–673, 2021.
https:/​/​doi.org/​10.1021/​acs.jpclett.0c03410

[23] Jakob S. Kottmann and Alán Aspuru-Guzik. Optimized Low-Depth Quantum Circuits for Molecular Electronic Structure using a Separable Pair Approximation. Physical Review A, 105(3):032449, 2022.
https:/​/​doi.org/​10.1103/​PhysRevA.105.032449

[24] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point quantum search with an optimal number of queries. Physical Review Letters, 113(21):210501, 2014.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.210501

[25] Guoming Wang, Dax Enshan Koh, Peter D Johnson, and Yudong Cao. Minimizing estimation runtime on noisy quantum computers. PRX Quantum, 2(1):010346, 2021.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.010346

[26] Oscar Higgott, Daochen Wang, and Stephen Brierley. Variational Quantum Computation of Excited States. Quantum, 3:156, 2019.
https:/​/​doi.org/​10.22331/​q-2019-07-01-156

[27] Robert M. Parrish, Edward G. Hohenstein, Peter L. McMahon, and Todd J. Martínez. Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. Physical Review Letters, 122(23):230401, 2019.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.230401

[28] Ken M. Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace-search variational quantum eigensolver for excited states. Physical Review Research, 1(3), 2019.
https:/​/​doi.org/​10.1103/​PhysRevResearch.1.033062

[29] Joonho Lee, William J. Huggins, Martin Head-Gordon, and K. Birgitta Whaley. Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. Journal of Chemical Theory and Computation, 15(1):311–324, 2019.
https:/​/​doi.org/​10.1021/​acs.jctc.8b01004

[30] Jakob S. Kottmann, Abhinav Anand, and Alán Aspuru-Guzik. A feasible approach for automatically differentiable unitary coupled-cluster on quantum computers. Chemical Science, 12(10):3497–3508, 2021.
https:/​/​doi.org/​10.1039/​D0SC06627C

[31] Ruizhe Zhang, Guoming Wang, and Peter Johnson. Computing Ground State Properties with Early Fault-Tolerant Quantum Computers. Quantum, 6:761, 2022.
https:/​/​doi.org/​10.22331/​q-2022-07-11-761

Cited by

[1] Peter D. Johnson, Alexander A. Kunitsa, Jérôme F. Gonthier, Maxwell D. Radin, Corneliu Buda, Eric J. Doskocil, Clena M. Abuan, and Jhonathan Romero, “Reducing the cost of energy estimation in the variational quantum eigensolver algorithm with robust amplitude estimation”, arXiv:2203.07275.

[2] Min-Quan He, Dan-Bo Zhang, and Z. D. Wang, “Quantum Gaussian filter for exploring ground-state properties”, Physical Review A 106 3, 032420 (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2022-10-09 14:30:40). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2022-10-09 14:30:38: Could not fetch cited-by data for 10.22331/q-2022-10-06-829 from Crossref. This is normal if the DOI was registered recently.

spot_img

Latest Intelligence

spot_img