Zephyrnet Logo

Spin-correlated exciton–polaritons in a van der Waals magnet

Date:

  • Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Basov, D., Fogler, M. & De Abajo, F. J. G. Polaritons in van der Waals materials. Science 354, 6309 (2016).

    Article 

    Google Scholar
     

  • Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

    CAS 

    Google Scholar
     

  • Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 6428 (2019).

    Article 

    Google Scholar
     

  • Liu, S. et al. Direct observation of magnon–phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields. Phys. Rev. Lett. 127, 097401 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kang, S. et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3. Nature 583, 785–789 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nat. Mater. 20, 964–970 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Belvin, C. A. et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator. Nat. Commun. 12, 4837 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

    Article 

    Google Scholar
     

  • Kim, S. Y. et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett. 120, 136402 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Gnatchenko, S., Kachur, I., Piryatinskaya, V., Vysochanskii, Y. M. & Gurzan, M. Exciton–magnon structure of the optical absorption spectrum of antiferromagnetic MnPS3. Low. Temp. Phys. 37, 144–148 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Kudlacik, D. et al. Exciton and exciton–magnon photoluminescence in the antiferromagnet CuB2O4. Phys. Rev. B 102, 035128 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tartakovskii, A. et al. Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Virgili, T. et al. Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Phys. Rev. B 83, 245309 (2011).

    Article 

    Google Scholar
     

  • Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 1–9 (2019).

    Article 

    Google Scholar
     

  • Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photonics 13, 378–383 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 1–7 (2021).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci. Adv. 7, eabf3096 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Birowska, M., Junior, P. E. F., Fabian, J. & Kunstmann, J. Large exciton binding energies in MnPS3 as a case study of a van der Waals layered magnet. Phys. Rev. B 103, L121108 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lane, C. & Zhu, J.-X. Thickness dependence of electronic structure and optical properties of a correlated van der waals antiferromagnetic NiPS3 thin film. Phys. Rev. B 102, 075124 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    CAS 
    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img