Zephyrnet Logo

Single-photon detection using high-temperature superconductors

Date:

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  • Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  Google Scholar 

  • Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  CAS  Google Scholar 

  • Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540–544 (2013).

    Article  CAS  Google Scholar 

  • Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  CAS  Google Scholar 

  • Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361–365 (2017).

    Article  CAS  Google Scholar 

  • Paterova, A. V., Yang, H., An, C., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018).

    Article  Google Scholar 

  • Bhargav, A. M., Rakshit, R. K., Das, S. & Singh, M. Metrology perspective of single-photon detectors: review on global calibration methods. Adv. Quantum Technol. 4, 2100008 (2021).

    Article  Google Scholar 

  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).

    Article  CAS  Google Scholar 

  • Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  • Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676–680 (2016).

    Article  CAS  Google Scholar 

  • Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  CAS  Google Scholar 

  • Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).

    Article  CAS  Google Scholar 

  • Zhao, Q.-Y. et al. Single-photon imager based on a superconducting nanowire delay line. Nat. Photonics 11, 247–251 (2017).

    Article  CAS  Google Scholar 

  • Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photonics 8, 2800–2810 (2021).

    Article  CAS  Google Scholar 

  • Ozana, N. et al. Superconducting nanowire single-photon sensing of cerebral blood flow. Neurophotonics 8, 035006 (2021).

    Article  CAS  Google Scholar 

  • Li, L. & Davis, L. M. Single photon avalanche diode for single molecule detection. Rev. Sci. Instrum. 64, 1524–1529 (1993).

    Article  CAS  Google Scholar 

  • Bao, Z. et al. Laser ranging at few-photon level by photon-number-resolving detection. Appl. Opt. 53, 3908–3912 (2014).

    Article  CAS  Google Scholar 

  • Zhu, J. et al. Demonstration of measuring sea fog with an SNSPD-based lidar system. Sci. Rep. 7, 1–7 (2017).

    Article  Google Scholar 

  • Carp, S. A. et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. J. Biomed. Opt. 25, 097003 (2020).

    Article  CAS  Google Scholar 

  • Poon, C.-S. et al. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. Biomed. Opt. Express 13, 1344–1356 (2022).

    Article  CAS  Google Scholar 

  • Ota, R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol. Phys. Technol. 14, 134–148 (2021).

    Article  Google Scholar 

  • Ceccarelli, F. et al. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. Adv. Quantum Technol. 4, 2000102 (2021).

    Article  CAS  Google Scholar 

  • Kim, J., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999).

    Article  CAS  Google Scholar 

  • Berggren, K. & Nam, S.-W. in Single-Photon Generation and Detection Vol. 45 (eds Migdall, A. et al.) Ch. 6 (Elsevier, 2013).

  • Wolff, M. A. et al. Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency. Appl. Phys. Lett. 118, 154004 (2021).

    Article  CAS  Google Scholar 

  • Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Article  Google Scholar 

  • Hu, P. et al. Detecting single infrared photons toward optimal system detection efficiency. Opt. Express 28, 36884–36891 (2020).

    Article  CAS  Google Scholar 

  • Chang, J. et al. Detecting telecom single photons with 99.5% system detection efficiency and high time resolution. APL Photonics 6, 036114 (2021).

    Article  CAS  Google Scholar 

  • Hochberg, Y. et al. Detecting sub-GeV dark matter with superconducting nanowires. Phys. Rev. Lett. 123, 151802 (2019).

    Article  CAS  Google Scholar 

  • Korzh, B. et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nat. Photonics 14, 250–255 (2020).

    Article  CAS  Google Scholar 

  • Cherednichenko, S., Acharya, N., Novoselov, E. & Drakinskiy, V. Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications. Supercond. Sci. Technol. 34, 044001 (2021).

    Article  Google Scholar 

  • Engel, A., Renema, J. J., Il’in, K. & Semenov, A. Detection mechanism of superconducting nanowire single-photon detectors. Supercond. Sci. Technol. 28, 114003 (2015).

    Article  Google Scholar 

  • Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    Article  Google Scholar 

  • Sherman, N. Superconducting nuclear particle detector. Phys. Rev. Lett. 8, 438 (1962).

    Article  Google Scholar 

  • Johnson, M., Herr, A. & Kadin, A. Bolometric and nonbolometric infrared photoresponses in ultrathin superconducting nbn films. J. Appl. Phys. 79, 7069–7074 (1996).

    Article  CAS  Google Scholar 

  • Semenov, A. D., Gol’tsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. Phys. C Supercond. 351, 349–356 (2001).

    Article  CAS  Google Scholar 

  • Gol’Tsman, G. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  Google Scholar 

  • Shibata, H. Review of superconducting nanostrip photon detectors using various superconductors. IEICE Trans. Electron. 104, 429–434 (2021).

    Article  Google Scholar 

  • Velasco, A. E. et al. High-operating-temperature superconducting nanowire single photon detectors. In Conference on Lasers and Electro-optics QELS_Fundamental Science, FW4C–5 (Optical Society of America, 2016).

  • Andersson, E., Arpaia, R., Trabaldo, E., Bauch, T. & Lombardi, F. Fabrication and electrical transport characterization of high quality underdoped YBa2Cu3O7−δ nanowires. Supercond. Sci. Technol. 33, 064002 (2020).

    Article  Google Scholar 

  • Ejrnaes, M. et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics. Supercond. Sci. Technol. 30, 12LT02 (2017).

    Article  Google Scholar 

  • Lyatti, M. et al. Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7−x nanowires. Nat. Commun. 11, 763 (2020).

    Article  CAS  Google Scholar 

  • Frenkel, A. et al. Optical response of nongranular high Tc Y1Ba2Cu3O7−x superconducting thin films. J. Appl. Phys. 67, 3054–3068 (1990).

    Article  CAS  Google Scholar 

  • Amari, P. et al. High-temperature superconducting nanomeanders made by ion irradiation. Supercond. Sci. Technol. 31, 015019 (2018).

    Article  Google Scholar 

  • Couëdo, F. et al. Dynamic properties of high-Tc superconducting nano-junctions made with a focused helium ion beam. Sci. Rep. 10, 1–9 (2020).

    Article  Google Scholar 

  • Sterpetti, E., Biscaras, J., Erb, A. & Shukla, A. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x. Nat. Commun. 8, 1–8 (2017).

    Article  CAS  Google Scholar 

  • Wang, F., Biscaras, J., Erb, A. & Shukla, A. Superconductor–insulator transition in space charge doped one unit cell Bi2.1Sr1.9CaCu2O8+x. Nat. Commun. 12, 1–6 (2021).

    Google Scholar 

  • Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-Tc two-dimensional atomic crystals. Phys. Rev. B 90, 081402 (2014).

    Article  CAS  Google Scholar 

  • Vasquez, R. Intrinsic photoemission signals, surface preparation, and surface stability of high temperature superconductors. J. Electron Spectrosc. Relat. Phenom. 66, 209–222 (1994).

    Article  CAS  Google Scholar 

  • Poccia, N. et al. Evolution and control of oxygen order in a cuprate superconductor. Nat. Mater. 10, 733–736 (2011).

    Article  CAS  Google Scholar 

  • Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2.1Sr1.9CaCu2.0O8+δ superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    Article  CAS  Google Scholar 

  • Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  Google Scholar 

  • Cybart, S. A. et al. Nano Josephson superconducting tunnel junctions in YBa2Cu3O7−δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 10, 598–602 (2015).

    Article  CAS  Google Scholar 

  • Martinez, G. D., Buckley, D., Charaev, I., Dow, D. E. & Berggren, K. K. Superconducting nanowire fabrication using dislocation engineering. In 2019 IEEE MIT Conference (URTC) 1–4 (IEEE, 2019).

  • Gozar, A., Litombe, N. E., Hoffman, J. E. & Božović, I. Optical nanoscopy of high Tc cuprate nanoconstriction devices patterned by helium ion beams. Nano Lett. 17, 1582–1586 (2017).

    Article  CAS  Google Scholar 

  • Seifert, P. et al. A high-Tc Van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. 2D Mater. 8, 035053 (2021).

    Article  CAS  Google Scholar 

  • Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008).

    Article  CAS  Google Scholar 

  • Logvenov, G., Gozar, A. & Bozovic, I. High-temperature superconductivity in a single copper–oxygen plane. Science 326, 699–702 (2009).

    Article  CAS  Google Scholar 

  • Skocpol, W., Beasley, M. & Tinkham, M. Self-heating hotspots in superconducting thin-film microbridges. J. Appl. Phys. 45, 4054–4066 (1974).

    Article  Google Scholar 

  • Chiles, J. et al. Superconducting microwire detectors based on WSi with single-photon sensitivity in the near-infrared. Appl. Phys. Lett. 116, 242602 (2020).

    Article  CAS  Google Scholar 

  • Caloz, M. et al. Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. J. Appl. Phys. 126, 164501 (2019).

    Article  Google Scholar 

  • Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photonics 17, 112–119 (2023).

    Article  CAS  Google Scholar 

  • Kerman, A. J., Yang, J. K., Molnar, R. J., Dauler, E. A. & Berggren, K. K. Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B 79, 100509 (2009).

    Article  Google Scholar 

  • Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210–214 (2013).

    Article  CAS  Google Scholar 

  • Semenov, A. D. Superconducting nanostrip single-photon detectors some fundamental aspects in detection mechanism, technology and performance. Supercond. Sci. Technol. 34, 054002 (2021).

    Article  Google Scholar 

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  • Varma, C. M. Colloquium: linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).

    Article  Google Scholar 

  • Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img