Zephyrnet Logo

Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling

Date:

  • 1.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    CAS  Article  Google Scholar 

  • 2.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    Article  Google Scholar 

  • 3.

    Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).

    Article  Google Scholar 

  • 4.

    Granqvist, C. G. & Hjortsberg, A. Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205–4220 (1981).

    CAS  Article  Google Scholar 

  • 5.

    Gentle, A. & Smith, G. Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373–379 (2010).

    CAS  Article  Google Scholar 

  • 6.

    Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).

    CAS  Article  Google Scholar 

  • 7.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Zhao, D. et al. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).

    Article  Google Scholar 

  • 9.

    Li, W. & Fan, S. Radiative cooling: harvesting the coldness of the universe. Opt. Photon. News 30, 32–39 (2019).

    Article  Google Scholar 

  • 10.

    Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    CAS  Article  Google Scholar 

  • 11.

    Goldstein, E. A., Raman, A. & Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017).

    Article  Google Scholar 

  • 12.

    Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    CAS  Article  Google Scholar 

  • 14.

    Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–318 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Zhou, L. et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724 (2019).

    Article  Google Scholar 

  • 16.

    Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    CAS  Article  Google Scholar 

  • 17.

    Wang, H. et al. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011).

    CAS  Article  Google Scholar 

  • 18.

    Liu, T. et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 26, 3433–3440 (2014).

    Article  Google Scholar 

  • 19.

    Li, D., Babel, A., Jenekhe, S. A. & Xia, Y. Nanofibers of conjugated polymers prepared by electrospinning with a two‐capillary spinneret. Adv. Mater. 16, 2062–2066 (2004).

    CAS  Article  Google Scholar 

  • 20.

    Yang, D., Lu, B., Zhao, Y. & Jiang, X. Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19, 3702–3706 (2007).

    CAS  Article  Google Scholar 

  • 21.

    Hu, X. et al. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 185, 12–21 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Liu, M. et al. A review: electrospun nanofiber materials for lithium–sulfur batteries. Adv. Funct. Mater. 29, 1905467 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Wang, Y., Wang, S. & Lou, X. W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 17236–17240 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Han, K. S. et al. Electrically activated ultrathin PVDF‐TrFE air filter for high‐efficiency PM1.0 filtration. Adv. Funct. Mater. 29, 1903633 (2019).

    Article  Google Scholar 

  • 25.

    Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Manney, G. L. et al. Unprecedented Arctic ozone loss in 2011. Nature 478, 469–475 (2011).

    CAS  Article  Google Scholar 

  • 27.

    Munday, J. N. Tackling climate change through radiative cooling. Joule 3, 2057–2060 (2019).

    Article  Google Scholar 

  • 28.

    Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 5, 691–696 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Seager, S. The search for extrasolar Earth-like planets. Earth Planet. Sci. Lett. 208, 113–124 (2003).

    CAS  Article  Google Scholar 

  • 30.

    Kaltenegger, L., Sasselov, D. & Rugheimer, S. Water-planets in the habitable zone: atmospheric chemistry, observable features, and the case of Kepler-62e and -62f. Astrophys. J. Lett. 775, 1384–1395 (2013).

    Google Scholar 

  • 31.

    VPL Spectral Explorer. NASA Astrobiology Institute Virtual Planetary Laboratory http://depts.washington.edu/naivpl/content/vpl-spectral-explorer (2012).

  • 32.

    Vladilo, G., Silva, L., Murante, G., Filippi, L. & Provenzale, A. Modeling the surface temperature of Earth-like planets. Astrophys. J. Lett. 804, 50 (2015).

    Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00800-4

    spot_img

    VC Cafe

    VC Cafe

    Latest Intelligence

    spot_img