Zephyrnet Logo

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy

Date:

Home > Press > Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy

Researchers demonstrated a new simple QKD system over a fiber network in Padua, Italy. A map of the city center [©2021 Google] shows that the transmitter was placed at the ICT Center of UniPD while the receiver was located in the Department of Mathematics. The transmitter and the receiver were connected by 3.4 km of deployed fibers. CREDIT
QuantumFuture Group, Università degli Studi di Padova

Abstract:
In a new study, researchers demonstrate an automated, easy-to-operate quantum key distribution (QKD) system using the fiber network in the city of Padua, Italy. The field test represents an important step toward implementing this highly secure quantum communication technology using the type of communication networks already in place in many regions around the world.

 

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy

Washington, DC | Posted on June 11th, 2021

QKD offers impenetrable encryption for data communication because it uses the quantum properties of light to generate secure random keys for encrypting and decrypting data.

“QKD can be useful in any situation where security is paramount because it offers unconditional security for the key exchange process,” said Marco Avesani from Università degli Studi di Padova in Italy, co-first author of the new study with Luca Calderaro and Giulio Foletto. “It can be used to encrypt and authenticate health data sent between hospitals or money transfers among banks, for example.”

In The Optical Society (OSA) journal Optics Letters, researchers led by Paolo Villoresi and Giuseppe Vallone report that their simple system is stable over time and can generate quantum-secure cryptographic keys at sustained rates over a standard telecommunications infrastructure.

“QKD systems usually require a complex stabilization system and additional dedicated synchronization hardware,” said Avesani. “We developed a complete QKD system that can be directly interfaced with standard telecommunications equipment and doesn’t require additional hardware for synchronization. The system fits easily into the rack enclosures commonly found in server rooms.”

Designing an easy-to-use system

To produce the quantum states required by QKD, the researchers developed a new encoder for manipulating the polarization of single photons. The encoder, which the researchers call iPOGNAC, provides a fixed and stable polarization reference that doesn’t require frequent recalibration. This feature is also advantageous for free-space and satellite quantum communication, where recalibrations are hard to perform.

“Because of the technology we developed, the source was ready to produce quantum states when we moved our system from the lab to the location of the field trial,” said Calderaro. “We didn’t have to perform the slow, and often prone-to-failure, alignment procedure required for most QKD systems.”

The researchers also developed a new synchronization algorithm, which they call

Qubit4Sync, to synchronize the machines of the two QKD users. Rather than using dedicated additional hardware and an added frequency channel for synchronization, the new system uses software and the same optical signals being used for QKD. This makes the system smaller, cheaper, and easier to integrate into an existing optical network.

To test the new system, the researchers brought their two QKD terminals to two university buildings roughly 3.4 km apart in different sections of Padua. They connected the systems to two underground optical fibers that are part of the university’s communication network. These fibers supported the quantum channel carrying qubits and the classical channel needed to transfer ancillary information.

A quantum-secured video call

“The field trial was successful,” said Foletto. “We showed that our simple system can produce secret keys at speeds of kilobits per second and that it works outside of the laboratory with little human intervention. It was also easy and quick to install.”

In a public demonstration, the researchers used their setup to enable a quantum-secured video call between the Rector of the University of Padua and the Director of the Mathematics Department. The researchers note that the system’s performance is comparable to other commercial QKD systems in terms of secret key generation rate while also having fewer components and being easier to integrate into an existing fiber network.

They are working to reduce the size of the detection apparatus and to make the system more robust to noise from other light traveling in the same fiber. The effort to develop a complete and autonomous QKD system led to the creation of a spin-off company called ThinkQuantum s.r.l, which is working to commercialize this technology.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Miguel Alonso, Institut Fresnel, École Centrale de Marseille and Aix-Marseille Université, France, University of Rochester, USA. Optics Letters is available online at OSA Publishing.

For more information, please click here

Contacts:
James Merrick
202-416-1994

Media Contact:
@opticalsociety

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: M Avesani, L. Calderaro, G. Foletto, C. Agnesi, F. Picciariello, F. Santagiustina, A. Scriminich, A. Stanco, F. Vedovato, M. Zahidy, G. Vallone, P. Villoresi, “Resource-effective Quantum Key Distribution: a field trial in Padua city center,” Opt. Lett., 46, 12, 2848-2851(2021).:

 

Related News Press

News and information

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Quantum Physics

Quantum holds the key to secure conference calls June 6th, 2021

An atom chip interferometer that could detect quantum gravity June 4th, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Quantum communication

Quantum holds the key to secure conference calls June 6th, 2021

Quantum steering for more precise measurements April 23rd, 2021

Physics

An atom chip interferometer that could detect quantum gravity June 4th, 2021

Possible Futures

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Discoveries

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Announcements

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year’s Virtual Conference Streams Free to ALL June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Molecular coating enhances organic solar cells June 11th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Coinsmart. Beste Bitcoin-Börse in Europa
Source: http://www.nanotech-now.com/news.cgi?story_id=56709

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?