Zephyrnet Logo

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation

Date:

Home > Press > Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation

A light field with time-dependent frequencies - propagating in a waveguide. Due to self-compression the pulse addresses individual quantum emitters. CREDIT
University of Innsbruck
A light field with time-dependent frequencies – propagating in a waveguide. Due to self-compression the pulse addresses individual quantum emitters. CREDIT
University of Innsbruck

Abstract:
In order to exploit the properties of quantum physics technologically, quantum objects and their interaction must be precisely controlled. In many cases, this is done using light. Researchers at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences have now developed a method to individually address quantum emitters using tailored light pulses. “Not only is it important to individually control and read the state of the emitters,” says Oriol Romero-Isart, “but also to do so while leaving the system as undisturbed as possible.” Together with Juan Jose? Garci?a-Ripoll (IQOQI visiting fellow) from the Instituto de Fi?sica Fundamental in Madrid, Romero-Isart’s research group has now investigated how specifically engineered pulses can be used to focus light on a single quantum emitter.

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation


Innsbruck, Austria | Posted on March 12th, 2021

Self-compressing light pulse

“Our proposal is based on chirped light pulses,” explains Silvia Casulleras, first author of the research paper. “The frequency of these light pulses is time-dependent.” So, similar to the chirping of birds, the frequency of the signal changes over time. In structures with certain electromagnetic properties – such as waveguides – the frequencies propagate at different speeds. “If you set the initial conditions of the light pulse correctly, the pulse compresses itself at a certain distance,” explains Patrick Maurer from the Innsbruck team. “Another important part of our work was to show that the pulse enables the control of individual quantum emitters.” This approach can be used as a kind of remote control to address, for example, individual superconducting quantum bits in a waveguide or atoms near a photonic crystal.

Wide range of applications

In their work, now published in Physical Review Letters, the scientists show that this method works not only with light or electromagnetic pulses, but also with other waves such as lattice oscillations (phonons) or magnetic excitations (magnons). The research group led by the Innsbruck experimental physicist Gerhard Kirchmair, wants to implement the concept for superconducting qubits in the laboratory in close collaboration with the team of theorists.

###

The research was financially supported by the European Union.

####

For more information, please click here

Contacts:
Silvia Casulleras
43-512-507-52261

@uniinnsbruck

Copyright © University of Innsbruck

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists stabilize atomically thin boron for practical use March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Superconductivity

Nanowire could provide a stable, easy-to-make superconducting transistor: Inspired by decades-old MIT research, the new technology could boost quantum computers and other superconducting electronics February 12th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Transition metal ‘cocktail’ helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Possible Futures

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Use of perovskite will be a key feature of the next generation of electronic appliances: Nanomaterials of perovskite dispersed in hexane and irradiated by laser; light emission by these materials is intense thanks to resistance to surface defects March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Chip Technology

Scientists build the smallest cable containing a spin switch March 12th, 2021

GLOBALFOUNDRIES 22FDX RF Solution Provides the Basis for Next-Gen mmWave Automotive Radar: Next-generation auto radar technology, based on GF’s 22FDX RF solution, will help make vehicles smarter and roads even safer than today March 10th, 2021

CEA-Leti Envisions Widespread Use of LiDAR Systems Based on Integrated Optical Phased Arrays (OPAs): OPAs with Solid-State Beam Steering Can Reduce the Cost and Size of LiDAR Systems & Improve Performance; Results Reported at Photonics West 2021 March 9th, 2021

Instrument at BESSY II shows how light activates MoS2 layers to become catalysts March 8th, 2021

Quantum Computing

Scientists stabilize atomically thin boron for practical use March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

CEA-Leti Announces 16 Papers to Be Presented At Photonics West 2021 and a Virtual Workshop on March 25 March 3rd, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Discoveries

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists stabilize atomically thin boron for practical use March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Announcements

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Scientists stabilize atomically thin boron for practical use March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Shedding light on perovskite films: Efficient materials for future solar cells – New model to determine photoluminescence quantum efficiency March 16th, 2021

Use of perovskite will be a key feature of the next generation of electronic appliances: Nanomaterials of perovskite dispersed in hexane and irradiated by laser; light emission by these materials is intense thanks to resistance to surface defects March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Checkout PrimeXBT
Trade with the Official CFD Partners of AC Milan
Source: http://www.nanotech-now.com/news.cgi?story_id=56600

spot_img

Latest Intelligence

spot_img