Zephyrnet Logo

Purification and functional characterization of novel human skeletal stem cell lineages – Nature Protocols

Date:

  • Ono, N., Balani, D. H. & Kronenberg, H. M. Stem and progenitor cells in skeletal development. Curr. Top. Dev. Biol. 133, 1–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front. Cell. Dev. Biol. 13, 189 (2019).

    Article  Google Scholar 

  • Dzierzak, E. & Bigas, A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639–651 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Haas, S., Trumpp, A. & Milsom, M. D. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22, 627–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Sakamaki, T. et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem. Biophys. Res. Commun. 539, 34–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kagami, H., Agata, H. & Tojo, A. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Int. J. Biochem. Cell Biol. 43, 286–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein, A. J., Chailakhyan, R. K. & Gerasimov, U. V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20, 263–272 (1987).

    CAS  PubMed  Google Scholar 

  • Friedenstein, A. J., Gorskaja, J. F. & Kulagina, N. N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274 (1976).

    CAS  PubMed  Google Scholar 

  • Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, S. R. et al. Identification and isolation of small CD44-negative mesenchymal stem/progenitor cells from human bone marrow using elutriation and polychromatic flow cytometry. Stem Cells Transl. Med. 2, 567–578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y. et al. Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. Sci. China Life Sci. 63, 429–442 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Chan, C. K. et al. Identification and specification of the mouse skeletal stem cell. Cell 160, 285–298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, C. K. F. et al. Identification of the human skeletal stem cell. Cell 175, 43–56.e21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chung, M. T. et al. CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells. Tissue Eng. Part A 19, 989–997 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, A., Dlubek, D., Drabczak-Skrzypek, D., Bogunia-Kubik, K. & Emilia Marrow cells cultured in MSC medium expand to CD73, CD90 and CD105 cells of fibroblast-like morphology. Blood 106, 4319–4319 (2005).

    Google Scholar 

  • Quirici, N. et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30, 783–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino, A. et al. Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp. Hematol. 36, 1035–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Sacchetti, B. et al. No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Rep. 6, 897–913 (2016).

    Article  CAS  Google Scholar 

  • Arthur, A. & Gronthos, S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int. J. Mol. Sci. 21, 9759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed-Ahmed, S. et al. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Cell Tissue Res. 383, 1061–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou, F. Impact of the autonomic nervous system on the skeleton. Physiol. Rev. 98, 1083–1112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornetti, J., Welm, A. L. & Stewart, S. A. Understanding the bone in cancer metastasis. J. Bone Miner. Res. 33, 2099–2113 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M. P. et al. Articular cartilage regeneration by activated skeletal stem cells. Nat. Med. 26, 1583–1592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito, M., Guise, T. & Kang, Y. The biology of bone metastasis. Cold Spring Harb. Perspect. Med. 8, a031252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Marecic, O. et al. Identification and characterization of an injury-induced skeletal progenitor. Proc. Natl Acad. Sci. USA 112, 9920–9925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrosi, T. H. et al. Geriatric fragility fractures are associated with a human skeletal stem cell defect. Aging Cell 19, e13164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati, G. S. et al. Isolation and functional assessment of mouse skeletal stem cell lineage. Nat. Protoc. 13, 1294–1309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodnough, L. H. Cross-species comparisons reveal resistance of human skeletal stem cells to inhibition by non-steroidal anti-inflammatory drugs. Front. Endocrinol. 13, 924927 (2022).

    Article  Google Scholar 

  • Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife 10, e66063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton, J. J. et al. Dual use of hematopoietic and mesenchymal stem cells enhances engraftment and immune cell trafficking in an allogeneic humanized mouse model of head and neck cancer. Mol. Carcinog. 57, 1651–1663 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian, S. A., Anjos-Afonso, F. & Bonnet, D. Advances in human immune system mouse models for studying human hematopoiesis and cancer immunotherapy. Front. Immunol. 2, 619236 (2021).

    Article  Google Scholar 

  • Jain, R. & Jain, P. C. Production and partial characterization of collagenase of Streptomyces exfoliatus CFS 1068 using poultry feather. Indian J. Exp. Biol. 48, 174–178 (2010).

    CAS  PubMed  Google Scholar 

  • Steinhardt, R. Rips repaired. Nature 436, 925 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., He, Y., Zhang, Q., Ren, X. & Zhang, Z. Direct comparative analyses of 10X Genomics chromium and Smart-seq2. Genomics Proteom. Bioinforma. 19, 253–266 (2021).

    Article  CAS  Google Scholar 

  • Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img