Zephyrnet Logo

Odd- and even-denominator fractional quantum Hall states in monolayer WSe2

Date:

  • 1.

    Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 12, 144–149 (2016).

    Google Scholar 

  • 2.

    Movva, H. C. P. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article  Google Scholar 

  • 3.

    Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    CAS  Article  Google Scholar 

  • 4.

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982).

    CAS  Article  Google Scholar 

  • 5.

    Kleinbaum, E., Kumar, A., Pfeiffer, L. N., West, K. W. & Csáthy, G. A. Gap reversal at filling factors 3 + 1/3 and 3 + 1/5: towards novel topological order in the fractional quantum hall regime. Phys. Rev. Lett. 114, 076801 (2015).

    Article  Google Scholar 

  • 6.

    Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

    CAS  Article  Google Scholar 

  • 7.

    Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).

    Article  Google Scholar 

  • 8.

    Ki, D.-K., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Li, J. I. A. et al. Even-denominator fractional quantum Hall states in bilayer graphene. Science 358, 648–652 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nuc. Phys. B 360, 362–396 (1991).

    Article  Google Scholar 

  • 12.

    Levin, M., Halperin, B. I. & Rosenow, B. Particle-hole symmetry and the Pfaffian state. Phys. Rev. Lett. 99, 236806 (2007).

    Article  Google Scholar 

  • 13.

    Lee, S.-S., Ryu, S., Nayak, C. & Fisher, M. P. A. Particle-hole symmetry and the (nu =frac{5}{2})quantum Hall state. Phys. Rev. Lett. 99, 236807 (2007).

    Google Scholar 

  • 14.

    Son, D. T. Is the composite fermion a dirac particle? Phys. Rev. X 5, 031027 (2015).

    Google Scholar 

  • 15.

    Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7, 693–696 (2011).

    CAS  Article  Google Scholar 

  • 17.

    Feldman, B. E., Krauss, B., Smet, J. H. & Yacoby, A. Unconventional sequence of fractional quantum Hall states in suspended graphene. Science 337, 1196–1199 (2012).

    CAS  Article  Google Scholar 

  • 18.

    Zibrov, A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    CAS  Article  Google Scholar 

  • 19.

    de C. Chamon, C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  Google Scholar 

  • 20.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  • 21.

    Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013).

    Article  Google Scholar 

  • 22.

    Rose, F., Goerbig, M. O. & Piéchon, F. Spin- and valley-dependent magneto-optical properties of MoS2. Phys. Rev. B 88, 125438 (2013).

    Article  Google Scholar 

  • 23.

    Larentis, S. et al. Large effective mass and interaction-enhanced Zeeman splitting of K-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    CAS  Article  Google Scholar 

  • 24.

    Pisoni, R. et al. Interactions and magnetotransport through spin-valley coupled Landau levels in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Compressibility of the two-dimensional electron gas: measurements of the zero-field exchange energy and fractional quantum Hall gap. Phys. Rev. B 50, 1760–1778 (1994).

    CAS  Article  Google Scholar 

  • 27.

    Jain, J. K. Composite Fermions (Cambridge University Press, 2007).

  • 28.

    Goerbig, M. O. & Smith, C. M. Scaling approach to the phase diagram of quantum Hall systems. Europhys. Lett. 63, 736–742 (2003).

    CAS  Article  Google Scholar 

  • 29.

    Goerbig, M. O., Lederer, P. & Smith, C. M. Competition between quantum-liquid and electron-solid phases in intermediate Landau levels. Phys. Rev. B 69, 115327 (2004).

    Article  Google Scholar 

  • 30.

    Halperin, B. I. Theory of the quantized Hall conductance. Helv. Phys. Acta 56, 75–102 (1983).

    CAS  Google Scholar 

  • 31.

    Pan, W. et al. Exact quantization of the even-denominator fractional quantum Hall state at v=5/2 Landau level filling factor. Phys. Rev. Lett. 83, 3530–3533 (1999).

    CAS  Article  Google Scholar 

  • 32.

    Pistunova, K. et al. Transport and photoluminescent characterization of high-quality single layer WSe2 devices. In APS March Meeting 2019 A15.007 (APS, 2019).

  • 33.

    Apalkov, V. M. & Chakraborty, T. Stable Pfaffian state in bilayer graphene. Phys. Rev. Lett. 107, 186803 (2011).

    Article  Google Scholar 

  • 34.

    Papić, Z., Abanin, D. A., Barlas, Y. & Bhatt, R. N. Tunable interactions and phase transitions in Dirac materials in a magnetic field. Phys. Rev. B 84, 241306 (2011).

    Article  Google Scholar 

  • 35.

    Gervais, G. et al. Competition between a fractional quantum Hall liquid and bubble and Wigner crystal phases in the third Landau level. Phys. Rev. Lett. 93, 266804 (2004).

    CAS  Article  Google Scholar 

  • 36.

    Zeng, Y. et al. High-quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Peterson, M. R., Jolicoeur, T. & das Sarma, S. Orbital Landau level dependence of the fractional quantum Hall effect in quasi-two-dimensional electron layers: finite-thickness effects. Phys. Rev. B 78, 155308 (2008).

    Article  Google Scholar 

  • 38.

    Sreejith, G. J., Zhang, Y. & Jain, J. K. Surprising robustness of particle-hole symmetry for composite-fermion liquids. Phys. Rev. B 96, 125149 (2017).

    Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-0685-6

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?