Zephyrnet Logo

Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs

Date:

  • Pardee, K. et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165, 1255–1266 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Harrington, L. B. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article 

    Google Scholar
     

  • Lee, R. A. et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl Acad. Sci. USA 117, 25722–25731 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bruch, R. et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31, 1905311 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kaminski, M. M. et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat. Biomed. Eng. 4, 601–609 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, L. et al. HOLMESv2: a CRISPR–Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8, 2228–2237 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Dai, Y. et al. Exploring the trans-cleavage activity of CRISPR–Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem. Int. Ed. 58, 17399–17405 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Li, S.-Y. et al. CRISPR–Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018).

    Article 

    Google Scholar
     

  • Wong, Y.-P., Othman, S., Lau, Y.-L., Radu, S. & Chee, H.-Y. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J. Appl. Microbiol. 124, 626–643 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, D.-G., Brewster, J. D., Paul, M. & Tomasula, P. M. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048–6059 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Loynachan, C. N. et al. Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12, 279–288 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article 

    Google Scholar
     

  • Shan, Y., Zhou, X., Huang, R. & Xing, D. High-fidelity and rapid quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Anal. Chem. 91, 5278–5285 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Shi, T., Gao, G. & Cao, Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis. Markers 2016, 9085195 (2016).

    Article 

    Google Scholar
     

  • Beermann, J., Piccoli, M.-T., Viereck, J. & Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. & Jing, Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol. Sin. 39, 1110–1119 (2018).

    Article 

    Google Scholar
     

  • Zhu, C.-S. et al. Avenues toward microRNA detection in vitro: a review of technical advances and challenges. Comput. Struct. Biotechnol. J. 17, 904–916 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Dave, V. P. et al. MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab. Invest. 99, 452–469 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Garate, X. et al. Identification of the miRNAome of early mesoderm progenitor cells and cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 8, 8072 (2018).

    Article 

    Google Scholar
     

  • Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843.e22 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Burridge, P. W. et al. Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860 (2014).

    CAS 
    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img