Zephyrnet Logo

Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres – Nature Nanotechnology

Date:

  • Donaldson, K., Murphy, F. A., Rodger, D. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5 (2010).

    Article 

    Google Scholar
     

  • Mossman, B. T. et al. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J. Toxicol. Environ. Health B Crit. Rev. 14, 76–121 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W. & Buchanan, P. Lung cancer: biology and treatment options. Biochim. Biophys. Acta 1856, 189–210 (2015).

    CAS 

    Google Scholar
     

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article 

    Google Scholar
     

  • Abbate, C. et al. Changes induced by exposure of the human lung to glass fiber-reinforced plastic. Environ. Health Perspect. 114, 1725–1729 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Bernstein, D. M. Synthetic vitreous fibers: a review toxicology, epidemiology and regulations. Crit. Rev. Toxicol. 37, 839–886 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ferreira, A. S. et al. Case report: analytical electron microscopy of lung granulomas associated with exposure to coating materials carried by glass wool fibers. Environ. Health Perspect. 118, 249–252 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Padmore, T., Stark, C., Turkevich, L. & Champion, J. A. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages. Biochim. Biophys. Acta 1861, 58–67 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ryman-Rasmussen, J. P. et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol. 4, 747–751 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat. Nanotechnol. 14, 719–727 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Weisberg, S. P., Ural, B. B. & Farber, D. L. Tissue-specific immunity for a changing world. Cell 184, 1517–1529 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cronin, J. G. et al. Nanomaterials and innate immunity: a perspective of the current status in nanosafety. Chem. Res. Toxicol. 33, 1061–1073 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, T., Hidaka, T., Kumagai, Y. & Yamamoto, M. Environmental pollutants and the immune response. Nat. Immunol. 21, 1486–1495 (2020).

    Article 

    Google Scholar
     

  • Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saito, N. et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114, 6040–6079 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Qi, Y. T. et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J. Am. Chem. Soc. 144, 9723–9733 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fang, F. C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C., Arbault, S., Collignon, M. & Lemaître, F. Electrochemical monitoring of single cell secretion vesicular exocytosis and oxidative stress. Chem. Rev. 108, 2585–2621 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Azad, N., Rojanasakul, Y. & Vallyathan, V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 11, 1–15 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cheresh, P., Kim, S. J., Tulasiram, S. & Kamp, D. W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta 1832, 1028–1040 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moller, P. et al. Role of oxidative stress in carbon nanotube-generated health effects. Arch. Toxicol. 88, 1939–1964 (2014).

    Article 

    Google Scholar
     

  • Clausmeyer, J. & Schuhmann, W. Nanoelectrodes: applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging. Trends Anal. Chem. 79, 46–59 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ying, Y. L., Ding, Z., Zhan, D. & Long, Y. T. Advanced electroanalytical chemistry at nanoelectrodes. Chem. Sci. 8, 3338–3348 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Phan, N. T. N., Li, X. & Ewing, A. G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat. Rev. Chem. 1, 0048 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Hatamie, A. & Ewing, A. G. Nanoelectrochemical analysis inside a single living cell. Curr. Opin. Electrochem. 22, 94–101 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C. et al. Monitoring in real time with a microelectrode the release of reactive oxygen and nitrogen species by a single macrophage stimulated by its membrane mechanical depolarization. Chembiochem 7, 653–661 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C. et al. Real-time amperometric analysis of reactive oxygen and nitrogen species released by single immunostimulated macrophages. Chembiochem 9, 1472–1480 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C., Arbault, S. & Koh, A. C. W. Simultaneous detection of reactive oxygen and nitrogen species released by a single macrophage by triple potential-step chronoamperometry. Anal. Chem. 82, 1411–1419 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Proc. Natl Acad. Sci. USA 109, 11534–11539 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells. J. Am. Chem. Soc. 139, 13055–13062 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. W. et al. Real-time intracellular measurements of ROS and RNS in living cells with single core–shell nanowire electrodes. Angew. Chem. Int. Ed. 56, 12997–13000 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hu, K., Li, Y., Rotenberg, S. A., Amatore, C. & Mirkin, M. V. Electrochemical measurements of reactive oxygen and nitrogen species inside single phagolysosomes of living macrophages. J. Am. Chem. Soc. 141, 4564–4568 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. W. et al. Electrochemical monitoring of ROS/RNS homeostasis within individual phagolysosomes inside single macrophages. Angew. Chem. Int. Ed. 58, 7753–7756 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Masters, T. A., Pontes, B., Viasnoff, V., Li, Y. & Gauthier, N. C. Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc. Natl Acad. Sci. USA 110, 11875–11880 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639–649 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Freeman, S. A. & Grinstein, S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol. Rev. 262, 193–215 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Krendel, M. & Gauthier, N. C. Building the phagocytic cup on an actin scaffold. Curr. Opin. Cell Biol. 77, 102112 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639–653 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 36, 161–178 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Decoursey, T. E. & Ligeti, E. Regulation and termination of NADPH oxidase activity. Chem. Res. Toxicol. 62, 2173–2193 (2005).

    CAS 

    Google Scholar
     

  • Morgan, M. J. & Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C., Deakin, M. R. & Wightman, R. M. Electrochemical kinetics at microelectrodes. Part I. Quasi-reversible electron transfer at cylinders. J. Electroanal. Chem. 206, 23–36 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C. in Physical Electrochemistry: Principles, Methods and Applications (ed. Rubinstein, I.) Ch. 4 (Marcel Dekker, 1995).

  • Amatore, C. et al. Analysis of individual biochemical events based on artificial synapses using ultramicroelectrodes: cellular oxidative burst. Faraday Discuss. 116, 319–333 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Amatore, C. & Fosset, B. Equivalence between electrodes of different shapes between myth and reality. Anal. Chem. 68, 4377–4388 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, N., Ding, E., Feng, X., Xu, Y. & Cai, H. Synthesis, characterizations of dye-doped silica nanoparticles and their application in labeling cells. Colloids Surf. B 89, 133–138 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Duan, S. et al. Uterine metabolic disorder induced by silica nanoparticles: biodistribution and bioactivity revealed by labeling with FITC. J. Nanobiotechnol. 19, 62 (2021).

    Article 
    CAS 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img