Plato Data Intelligence.
Vertical Search & Ai.

Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells

Date:

  • EPFL. New world records: perovskite-on-silicon-tandem solar cells (2022); https://actu.epfl.ch/news/new-world-records-perovskite-on-silicon-tandem-sol/

  • Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article 

    Google Scholar
     

  • Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mazzarella, L. et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9, 1803241 (2019).

    Article 

    Google Scholar
     

  • Köhnen, E. et al. Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain. Energy Fuels 3, 1995–2005 (2019).

    Article 

    Google Scholar
     

  • Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Isikgor, F. H. et al. Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule 5, 1566–1586 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schulze, P. S. C. et al. 25.1% high‐efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber. Sol. RRL 4, 2000152 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Santbergen, R. et al. Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jäger, K., Sutter, J., Hammerschmidt, M., Schneider, P.-I. & Becker, C. Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics 10, 1991–2000 (2020).

    Article 

    Google Scholar
     

  • Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tennyson, E. M. et al. Multimodal microscale imaging of textured perovskite–silicon tandem solar cells. ACS Energy Lett. 6, 2293–2304 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Roß, M. et al. Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11, 2101460 (2021).

    Article 

    Google Scholar
     

  • Li, Y. et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Adv. Energy Mater. 11, 2102046 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Subbiah, A. S. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Lett. 5, 3034–3040 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhumagali, S. et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 11, 2101662 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Santbergen, R. et al. Ray-optics study of gentle non-conformal texture morphologies for perovskite/silicon tandems. Opt. Express 30, 5608 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Nanophotonic light management for perovskite–silicon tandem solar cells. J. Photonics Energy 8, 022601 (2018).

    Article 

    Google Scholar
     

  • Tockhorn, P. et al. Improved quantum efficiency by advanced light management in nanotextured solution-processed perovskite solar cells. ACS Photonics 7, 2589–2600 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sutter, J. et al. Tailored nanostructures for light management in silicon heterojunction solar cells. Sol. RRL 4, 2000484 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cruz, A. et al. Optoelectrical analysis of TCO + silicon oxide double layers at the front and rear side of silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 236, 111493 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhushan, B., Jung, Y. C. & Koch, K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. R. Soc. A 367, 1631–1672 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Joanny, J. F. & de Gennes, P. G. A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Tadmor, R. Open problems in wetting phenomena: pinning retention forces. Langmuir 37, 6357–6372 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J., Xia, J., Lei, W. & Wang, B. Advanced understanding of stickiness on superhydrophobic surfaces. Sci. Rep. 3, 3268 (2013).

    Article 

    Google Scholar
     

  • Minemawari, H. et al. Inkjet printing of single-crystal films. Nature 475, 364–367 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, G. et al. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 9, 2793 (2018).

    Article 

    Google Scholar
     

  • Chen, A. Z. et al. Crystallographic orientation propagation in metal halide perovskite thin films. J. Mater. Chem. A 5, 7796–7800 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xi, J. et al. Scalable, template driven formation of highly crystalline lead‐tin halide perovskite films. Adv. Funct. Mater. 31, 2105734 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, C. et al. Facet orientation tailoring via 2D-seed-induced growth enables highly efficient and stable perovskite solar cells. Joule 6, 240–257 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, W. et al. Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 8, 1702369 (2017).

    Article 

    Google Scholar
     

  • Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cho, C. et al. Effects of photon recycling and scattering in high-performance perovskite solar cells. Sci. Adv. 7, eabj1363 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tan, W. L. & McNeill, C. R. X-ray diffraction of photovoltaic perovskites: principles and applications. Appl. Phys. Rev. 9, 021310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. H. et al. 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 29, 1606831 (2017).

    Article 

    Google Scholar
     

  • Giesbrecht, N. et al. Synthesis of perfectly oriented and micrometer-sized MAPbBr3 perovskite crystals for thin-film photovoltaic applications. ACS Energy Lett. 1, 150–154 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Muscarella, L. A. et al. Crystal orientation and grain size: do they determine optoelectronic properties of MAPbI3 perovskite? J. Phys. Chem. Lett. 10, 6010–6018 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kirchartz, T., Staub, F. & Rau, U. Impact of photon recycling on the open-circuit voltage of metal halide perovskite solar cells. ACS Energy Lett. 1, 731–739 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Holman, Z. C., Descoeudres, A., Wolf, S. D. & Ballif, C. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J. Photovolt. 3, 1243–1249 (2013).

    Article 

    Google Scholar
     

  • Boccard, M. et al. Low-refractive-index nanoparticle interlayers to reduce parasitic absorption in metallic rear reflectors of solar cells. Phys. Status Solidi A 214, 1700179 (2017).

    Article 

    Google Scholar
     

  • Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article 

    Google Scholar
     

  • Wolf, A. J. et al. Origination of nano- and microstructures on large areas by interference lithography. Microelectron. Eng. 98, 293–296 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kern, W. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887–1892 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pierce, E., Carmona, F. J. & Amirfazli, A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf. A 323, 73–82 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zizak, I. The mySpot beamline at BESSY II. J. Large-Scale Res. Facil. 2, A102 (2016).

    Article 

    Google Scholar
     

  • Benecke, G. et al. A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Crystallogr. 47, 1797–1803 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917–926 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Meusel, M., Adelhelm, R., Dimroth, F., Bett, A. W. & Warta, W. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi-junction solar cells. Prog. Photovolt: Res. Appl. 10, 243–255 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, P.-I., Garcia Santiago, X., Rockstuhl, C. & Burger, S. Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes. In Digital Optical Technology 2017 (eds Kress B. C. et al.) 103350O (SPIE, 2017); https://doi.org/10.1117/12.2270609

  • Jäger, K., Korte, L., Rech, B. & Albrecht, S. Numerical optical optimization of monolithic planar perovskite–silicon tandem solar cells with regular and inverted device architectures. Opt. Express 25, A473 (2017).

    Article 

    Google Scholar
     

  • Pomplun, J., Burger, S., Zschiedrich, L. & Schmidt, F. Adaptive finite element method for simulation of optical nano structures. Physica Status Solidi B Basic Solid State Phys. 244, 3419–3434 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984).

    Article 

    Google Scholar
     

  • Santbergen, R. et al. GenPro4 optical model for solar cell simulation and its application to multijunction solar cells. IEEE J. Photovolt. 7, 919–926 (2017).

    Article 

    Google Scholar
     

  • Fell, A. A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations. IEEE Trans. Electron Devices 60, 733–738 (2013).

    Article 

    Google Scholar
     

  • Tockhorn, P. et al. Supplement to: Nano-optical designs for high efficiency monolithic perovskite–silicon tandem solar cells (HZB Data Service, 2022); https://doi.org/10.5442/ND000009

  • spot_img

    Latest Intelligence

    spot_img

    Latest Intelligence

    spot_img

    Latest Intelligence

    spot_img