Zephyrnet Logo

Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit

Date:

  • Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).

    CAS 

    Google Scholar
     

  • Mathur, N., Stolt, M. J. & Jin, S. Magnetic skyrmions in nanostructures of non-centrosymmetric materials. APL Mater. 7, 120703 (2019).

    Article 

    Google Scholar
     

  • Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Park, H. S. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 9, 337–342 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Braun, H.-B. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Adv. Phys. 61, 1–116 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Article 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 

    Google Scholar
     

  • Shibata, K. et al. Large anisotropic deformation of skyrmions in strained crystal. Nat. Nanotechnol. 10, 589–592 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rana, A. et al. Direct observation of 3D topological spin textures and their interactions using soft X-ray vector ptychography. Preprint at https://doi.org/10.48550/arXiv.2104.12933 (2021).

  • Bode, M. et al. Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477–481 (2006).

    Article 
    CAS 

    Google Scholar
     

  • McVitie, S. & Cushley, M. Quantitative Fresnel Lorentz microscopy and the transport of intensity equation. Ultramicroscopy 106, 423–431 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lichte, H. Performance limits of electron holography. Ultramicroscopy 108, 256–262 (2008).

    Article 
    CAS 

    Google Scholar
     

  • McVitie, S. et al. Aberration corrected Lorentz scanning transmission electron microscopy. Ultramicroscopy 152, 57–62 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chapman, J., Batson, P., Waddell, E. & Ferrier, R. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3, 203–214 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, K. X. et al. Disentangling magnetic and grain contrast in polycrystalline FeGe thin films using four-dimensional Lorentz scanning transmission electron microscopy. Phys. Rev. Appl. 17, 034066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article 

    Google Scholar
     

  • Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kovács, A. et al. Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film. Appl. Phys. Lett. 111, 192410 (2017).

    Article 

    Google Scholar
     

  • McGrouther, D. et al. Internal structure of hexagonal skyrmion lattices in cubic helimagnets. New J. Phys. 18, 095004 (2016).

    Article 

    Google Scholar
     

  • Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Milnor, J. W. Topology From the Differentiable Viewpoint (Press Of Virginia, 1965).

  • Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, T. et al. Improvement of the accuracy of phase observation by modification of phase-shifting electron holography. Ultramicroscopy 118, 21–25 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Boureau, V. et al. High-sensitivity mapping of magnetic induction fields with nanometer-scale resolution: comparison of off-axis electron holography and pixelated differential phase contrast. J. Phys. D: Appl. Phys. 54, 085001 (2020).

    Article 

    Google Scholar
     

  • Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Isaacson, M. Electron beam induced damage of organic solids: implications for analytical electron microscopy. Ultramicroscopy 4, 193–199 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stolt, M. J., Sigelko, X., Mathur, N. & Jin, S. Chemical pressure stabilization of the cubic B20 structure in skyrmion hosting Fe1–xCoxGe alloys. Chem. Mater. 30, 1146–1154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R Soc. A 339, 521–553 (1992).


    Google Scholar
     

  • Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).

    Article 

    Google Scholar
     

  • Odstrcil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).

    Article 

    Google Scholar
     

  • Odstrcil, M. et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express 24, 8360–8369 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Reimer, L. Transmission Electron Microscopy (Springer, 1989).

  • Lubk, A. et al. Nanoscale three-dimensional reconstruction of elastic and inelastic mean free path lengths by electron holographic tomography. Appl. Phys. Lett. 105, 173101 (2014).

    Article 

    Google Scholar
     

  • Egerton, R. F. & Cheng, S. C. Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 21, 231–244 (1987).

    Article 

    Google Scholar
     

  • Bechhoefer, J. Curve fits in the presence of random and systematic error. Am. J. Phys. 68, 424–429 (2000).

    Article 

    Google Scholar
     

  • Song, D. et al. Quantification of magnetic surface and edge states in an FeGe nanostripe by off-axis electron holography. Phys. Rev. Lett. 120, 167204 (2018).

    Article 

    Google Scholar
     

  • Mochizuki, M. et al. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13, 241–246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article 

    Google Scholar
     

  • Chen, Z. & Muller, D. A. Datasets for Lorentz electron ptychography for imaging magnetic textures beyond the diffraction limit. Zenodo https://doi.org/10.5281/zenodo.6684163 (2022).

  • Chen, Z., Jiang, Y., Muller, D. A. & Odstrcil, M. PtychoShelves_EM, source code for multislice electron ptychography. Zenodo https://doi.org/10.5281/zenodo.4659690 (2021).

  • spot_img

    Latest Intelligence

    spot_img