Zephyrnet Logo

Infrared nano-imaging of Dirac magnetoexcitons in graphene – Nature Nanotechnology

Date:

  • Peres, N. M. R., Guinea, F. & Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B Condens. Matter Mater. Phys. 73, 125411 (2006).

    Article  Google Scholar 

  • Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & De Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).

    Article  CAS  Google Scholar 

  • Jiang, Z. et al. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007).

    Article  CAS  Google Scholar 

  • Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).

    Article  Google Scholar 

  • Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011).

    Article  CAS  Google Scholar 

  • Crassee, I. et al. Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Phys. Rev. B Condens. Matter Mater. Phys. 84, 035103 (2011).

    Article  Google Scholar 

  • Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193 (2011).

    Article  CAS  Google Scholar 

  • Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008).

    Article  CAS  Google Scholar 

  • Kallin, C. & Halperin, B. I. Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655 (1984).

    Article  Google Scholar 

  • Lozovik, Y. E. & Sokolik, A. A. Influence of Landau level mixing on the properties of elementary excitations in graphene in strong magnetic field. Nanoscale Res. Lett. 7, 134 (2012).

    Article  Google Scholar 

  • Wang, W., Apell, S. P. & Kinaret, J. M. Edge magnetoplasmons and the optical excitations in graphene disks. Phys. Rev. B Condens. Matter Mater. Phys. 86, 125450 (2012).

    Article  Google Scholar 

  • Andreev, I. V., Muravev, V. M., Semenov, N. D., Zabolotnykh, A. A. & Kukushkin, I. V. Magnetodispersion of two-dimensional plasmon polaritons. Phys. Rev. B 104, 195436 (2021).

    Article  CAS  Google Scholar 

  • Petković, I., Williams, F. I. B. & Glattli, D. C. Edge magnetoplasmons in graphene. J. Phys. D: Appl. Phys. 47, 094010 (2014).

    Article  Google Scholar 

  • Poumirol, J. M. et al. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Commun. 8, 14626 (2017).

    Article  Google Scholar 

  • Slipchenko, T. M., Poumirol, J. M., Kuzmenko, A. B., Nikitin, A. Y. & Martín-Moreno, L. Interband plasmon polaritons in magnetized charge-neutral graphene. Commun. Phys. 4, 110 (2021).

    Article  CAS  Google Scholar 

  • Iyengar, A., Wang, J., Fertig, H. A. & Brey, L. Excitations from filled Landau levels in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 75, 125430 (2007).

    Article  Google Scholar 

  • Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. A 362, 787–805 (2004).

    Article  CAS  Google Scholar 

  • Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).

    Article  Google Scholar 

  • Dapolito, M. et al. Scattering-type scanning near-field optical microscopy with Akiyama piezo-probes. Appl. Phys. Lett. 120, 013104 (2022).

    Article  CAS  Google Scholar 

  • Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).

    Article  CAS  Google Scholar 

  • Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  CAS  Google Scholar 

  • Lundeberg, M. B. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 16, 204–207 (2017).

    Article  CAS  Google Scholar 

  • Jing, R. et al. Terahertz response of monolayer and few-layer WTe2 at the nanoscale. Nat. Commun. 12, 5594 (2021).

    Article  CAS  Google Scholar 

  • Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  CAS  Google Scholar 

  • McLeod, A. S. et al. Nanotextured phase coexistence in the correlated insulator V2O3. Nat. Phys. 13, 80–86 (2017).

    Article  CAS  Google Scholar 

  • Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).

    Article  CAS  Google Scholar 

  • Stinson, H. T. et al. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. Nat. Commun. 9, 3604 (2018).

    Article  CAS  Google Scholar 

  • Sunku, S. S. et al. Nano-photocurrent mapping of local electronic structure in twisted bilayer graphene. Nano Lett. 20, 2958–2964 (2020).

    Article  CAS  Google Scholar 

  • Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    Article  CAS  Google Scholar 

  • Shao, Y. et al. Nonlinear nanoelectrodynamics of a Weyl metal. Proc. Natl Acad. Sci. USA 118, e2116366118 (2021).

    Article  CAS  Google Scholar 

  • Sunku, S. S. et al. Hyperbolic enhancement of photocurrent patterns in minimally twisted bilayer graphene. Nat. Commun. 12, 1641 (2021).

    Article  CAS  Google Scholar 

  • Nedoliuk, I. O., Hu, S., Geim, A. K. & Kuzmenko, A. B. Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nat. Nanotechnol. 14, 756–761 (2019).

    Article  CAS  Google Scholar 

  • Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castri Neto, A. H. Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067 (2012).

    Article  CAS  Google Scholar 

  • Shizuya, K. Many-body corrections to cyclotron resonance in monolayer and bilayer graphene. Phys. Rev. B 81, 075407 (2010).

    Article  Google Scholar 

  • Henriksen, E. A. et al. Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy. Phys. Rev. Lett. 104, 067404 (2010).

    Article  CAS  Google Scholar 

  • Xu, X., Gabor, N. M., Alden, J. S., Van Der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  • Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 081413(R) (2009).

    Article  Google Scholar 

  • Wei, P., Bao, W., Pu, Y., Lau, C. N. & Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  • Lundeberg, M. B. & Koppens, F. H. L. Thermodynamic reciprocity in scanning photocurrent maps. Preprint at https://arxiv.org/abs/2011.04311 (2020).

  • Cao, H. et al. Photo-Nernst current in graphene. Nat. Phys. 12, 236–239 (2016).

    Article  CAS  Google Scholar 

  • Olbrich, P. et al. Giant photocurrents in a Dirac fermion system at cyclotron resonance. Phys. Rev. B Condens. Matter Mater. Phys. 87, 235439 (2013).

    Article  Google Scholar 

  • Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 486, 82–85 (2012).

    Article  Google Scholar 

  • Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2016).

    Article  Google Scholar 

  • Giubileo, F. & Di Bartolomeo, A. The role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 92, 143–175 (2017).

    Article  CAS  Google Scholar 

  • Chen, X. et al. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces—part II. Opt. Express 30, 11228 (2022).

    Article  CAS  Google Scholar 

  • Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).

    Article  CAS  Google Scholar 

  • Xin, N. et al. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 616, 270–274 (2023).

    Article  CAS  Google Scholar 

  • Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  • Tseng, C. C. et al. Gate-tunable proximity effects in graphene on layered magnetic insulators. Nano Lett. 22, 8495–8501 (2022).

    Article  CAS  Google Scholar 

  • Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    Article  CAS  Google Scholar 

  • Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).

    Article  CAS  Google Scholar 

  • Yu, J. et al. Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).

    Article  CAS  Google Scholar 

  • Hu, B., Tao, J., Zhang, Y. & Wang, Q. J. Magneto-plasmonics in graphene-dielectric sandwich. Opt. Express 22, 21727 (2014).

    Article  Google Scholar 

  • Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  CAS  Google Scholar 

  • Kim, R. H. J., Park, J.-M., Haeuser, S. J., Luo, L. & Wang, J. A sub-2 Kelvin cryogenic magneto-terahertz scattering-type scanning near-field optical microscope (cm-THz-sSNOM). Rev. Sci. Instrum. 94, 043702 (2023).

    Article  CAS  Google Scholar 

  • Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  CAS  Google Scholar 

  • Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (2000).

    Article  CAS  Google Scholar 

  • Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  CAS  Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img