Zephyrnet Logo

Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes

Date:

  • Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401–405 (2020).

    Article  CAS  Google Scholar 

  • Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  CAS  Google Scholar 

  • Stockman, M. I. Nanoplasmonic sensing and detection. Science 348, 287–288 (2015).

    Article  CAS  Google Scholar 

  • Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    Article  CAS  Google Scholar 

  • Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  CAS  Google Scholar 

  • Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).

    Article  CAS  Google Scholar 

  • Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article  CAS  Google Scholar 

  • Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article  CAS  Google Scholar 

  • Wang, K. et al. Coherent interaction between free electrons and a photonic cavity. Nature 582, 50–54 (2020).

    Article  CAS  Google Scholar 

  • Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  • Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    Article  Google Scholar 

  • Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).

    Article  CAS  Google Scholar 

  • Agio, M. & Cano, D. M. The Purcell factor of nanoresonators. Nat. Photon. 7, 674–675 (2013).

    Article  CAS  Google Scholar 

  • Min, B. et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  CAS  Google Scholar 

  • Yao, J., Yang, X., Yin, X., Bartal, G. & Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl Acad. Sci. USA 108, 11327–11331 (2011).

    Article  CAS  Google Scholar 

  • Su, Y., Chang, P., Lin, C. & Helmy, A. Record Purcell factors in ultracompact hybrid plasmonic ring resonators. Sci. Adv. 5, eaav1790 (2019).

    Article  CAS  Google Scholar 

  • Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  CAS  Google Scholar 

  • Epstein, I. et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020).

    Article  CAS  Google Scholar 

  • Alfaro-Mozaz, F. J. et al. Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).

    Article  CAS  Google Scholar 

  • Long, J. C. et al. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature 421, 922–925 (2003).

    Article  CAS  Google Scholar 

  • Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  CAS  Google Scholar 

  • Jiang, N., Zhuo, X. & Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018).

    Article  CAS  Google Scholar 

  • Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol. 14, 313–319 (2019).

    Article  CAS  Google Scholar 

  • Cho, C. H. et al. Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons. Nat. Mater. 10, 669–675 (2011).

    Article  CAS  Google Scholar 

  • Cho, C. H., Aspetti, C. O., Park, J. & Agarwal, R. Silicon coupled with plasmon nanocavity generates bright visible hot-luminescence. Nat. Photon. 7, 285–289 (2013).

    Article  CAS  Google Scholar 

  • Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article  CAS  Google Scholar 

  • Lee, I. H. et al. Image polaritons in boron nitride for extreme polariton confinement with low losses. Nat. Commun. 11, 3649 (2020).

    Article  CAS  Google Scholar 

  • Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    Article  CAS  Google Scholar 

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  CAS  Google Scholar 

  • Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).

    Article  CAS  Google Scholar 

  • Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  • Guddala, S. et al. Topological phonon-polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  CAS  Google Scholar 

  • Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  • Jacob, Z. Nanophotonics: hyperbolic phonon-polaritons. Nat. Mater. 13, 1081–1083 (2014).

    Article  CAS  Google Scholar 

  • Yuan, Z. et al. Extremely confined acoustic phonon polaritons in monolayer-hBN/metal heterostructures for strong light–matter interactions. ACS Photon. 7, 2610–2617 (2020).

    Article  CAS  Google Scholar 

  • Rivera, N., Christensen, T. & Narang, P. Phonon polaritonics in two-dimensional materials. Nano Lett. 19, 2653–2660 (2019).

    Article  CAS  Google Scholar 

  • Lu, F., Jin, M. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8, 307–312 (2014).

    Article  CAS  Google Scholar 

  • Ambrosio, A. et al. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11, 8741–8746 (2017).

    Article  CAS  Google Scholar 

  • Wang, L. et al. Revealing phonon polaritons in hexagonal boron nitride by multipulse peak force infrared microscopy. Adv. Opt. Mater. 8, 1901084 (2019).

    Article  Google Scholar 

  • Brown, L. V. et al. Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628–1636 (2018).

    Article  CAS  Google Scholar 

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  CAS  Google Scholar 

  • Li, P. et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892–896 (2018).

    Article  CAS  Google Scholar 

  • Xu, X. G. et al. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. ACS Nano 8, 11305–11312 (2014).

    Article  CAS  Google Scholar 

  • Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5, 4782 (2014).

    Article  CAS  Google Scholar 

  • Phillips, C., Lai, Y. F. & Walker, G. C. Fabry–Perot phonon polaritons in boron nitride nanotube resonators. J. Phys. Chem. Lett. 12, 11683–11687 (2021).

    Article  CAS  Google Scholar 

  • Wagner, M. et al. Ultrabroadband nanospectroscopy with a laser-driven plasma source. ACS Photon. 5, 1467–1475 (2018).

    Article  CAS  Google Scholar 

  • Jiang, J. H., Xu, X. G., Gilburd, L. & Walker, G. C. Optical hot-spots in boron-nitride nanotubes at mid infrared frequencies: one-dimensional localization due to random-scattering. Opt. Express 25, 25059–25070 (2017).

    Article  CAS  Google Scholar 

  • Flater, E. E., Zacharakis-Jutz, G. E., Dumba, B. G., White, I. A. & Clifford, C. A. Towards easy and reliable AFM tip shape determination using blind tip reconstruction. Ultramicroscopy 146, 130–143 (2014).

    Article  CAS  Google Scholar 

  • Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    Article  CAS  Google Scholar 

  • Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  Google Scholar 

  • Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).

    Article  CAS  Google Scholar 

  • Alfaro-Mozaz, F. J. et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    Article  CAS  Google Scholar 

  • Nikitin, A. Y. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  CAS  Google Scholar 

  • Wu, C., Salandrino, A., Ni, X. & Zhang, X. Electrodynamical light trapping using whispering-gallery resonances in hyperbolic cavities. Phys. Rev. X 4, 021015 (2014).

    Google Scholar 

  • Zhi, C., Bando, Y., Tan, C. & Golberg, D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135, 67–70 (2005).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology 22, 145602 (2011).

    Article  Google Scholar 

  • García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  • Raza, S. et al. Extremely confined gap surface-plasmon modes excited by electrons. Nat. Commun. 5, 4125 (2014).

    Article  CAS  Google Scholar 

  • Konečná, A. et al. Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys. Rev. B 98, 205409 (2018).

    Article  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img