Zephyrnet Logo

Hierarchically self-assembled homochiral helical microtoroids

Date:

  • Janoschek, R. Chirality: From Weak Bosons to the A-Helix 1st edn (Springer Verlag, 1991).

  • Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2011).

    Article 

    Google Scholar
     

  • Kim, J. Y. & Kotov, N. A. Origin of chiroptical activity in nanorod assemblies. Science 365, 1378–1379 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yagai, S., Kitamoto, Y., Datta, S. & Adhikari, B. Supramolecular polymers capable of controlling their topology. Acc. Chem. Res. 52, 1325–1335 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W., Jin, W., Fukushima, T., Mori, T. & Aida, T. Helix sense-selective supramolecular polymerization seeded by a one-handed helical polymeric assembly. J. Am. Chem. Soc. 137, 13792–13795 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Palmer, L. C. & Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Acc. Chem. Res. 41, 1674–1684 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12, 410–419 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cantekin, S., Balkenede, D. W. R., Smulders, M. M. J., Palmans, A. R. A. & Meijer, E. W. The effect of isotopic substitution on the chirality of a self-assembled helix. Nat. Chem. 3, 42–46 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jones, C. D. et al. Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat. Chem. 11, 375–381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • De, S. et al. Designing cooperatively folded abiotic uni- and multimolecular helix bundles. Nat. Chem. 10, 51–57 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583, 400–405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McDermott, G. et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 314, 517–521 (1995).

    Article 

    Google Scholar
     

  • Avrahami, E. M., Houben, L., Aram, L. & Gal, A. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 376, 312–316 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Geng, Z. et al. Moebius strips of chiral block copolymers. Nat. Commun. 10, 4090 (2019).

    Article 

    Google Scholar
     

  • Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).

    Article 

    Google Scholar
     

  • Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Laurent, B. A. & Grayson, S. M. Synthetic approaches for the preparation of cyclic polymers. Chem. Soc. Rev. 38, 2202–2213 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pochan, D. J. et al. Toroidal triblock copolymer assemblies. Science 306, 94–97 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Hollow nanotubular toroidal polymer microrings. Nat. Chem. 6, 97–103 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Frederix, P. W. J. M. et al. Structural and spectroscopic properties of assemblies of self-replicating peptide macrocycles. ACS Nano 11, 7858–7868 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Z. et al. Pulsating tubules from noncovalent macrocycles. Science 337, 1521–1526 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sun, L. et al. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat. Commun. 10, 2270 (2019).

    Article 

    Google Scholar
     

  • Xia, Y. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Y. et al. Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nat. Commun. 5, 5572 (2014).

    Article 

    Google Scholar
     

  • Walker, D. A., Hedrick, J. L. & Mirkin, C. A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science 366, 360–364 (2019).

    Article 

    Google Scholar
     

  • Gibaud, T. et al. Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481, 348–351 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sun, M. & Lee, M. Switchable aromatic nanopore structures: functions and applications. Acc. Chem. Res. 54, 2959–2968 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, P. et al. Polymeric toroidal self-assemblies: diverse formation mechanisms and functions. Adv. Func. Mater. 32, 2106036 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ouyang, G., Ji, L., Jiang, Y., Würthner, F. & Liu, M. Self-assembled Möbius strips with controlled helicity. Nat. Commun. 11, 5910 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Song, S. et al. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem. Sci. 13, 396–409 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Carretero, A. et al. Stepwise self-assembly to improve solar cell morphology. J. Mater. Chem. A 1, 11674 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Parenti, F., Tassinari, F., Libertini, E., Lanzi, M. & Mucci, A. Π-stacking signature in NMR solution spectra of thiophene-based conjugated polymers. ACS Omega 2, 5775–5784 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway control. J. Am. Chem. Soc. 141, 6092–6107 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Babu, S. S., Praveen, V. K. & Ajayaghosh, A. Functional π‑gelators and their applications. Chem. Rev. 114, 1973–2129 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Harada, N. & Nakanishi, K. A method for determining the chirality of two aromatic chromophores and the absolute configurations of chromomycin A3 and related antibiotics. J. Am. Chem. Soc. 91, 5896–5898 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ang, T. P., Wee, T. S. A. & Chin, W. S. Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters. J. Phy. Chem. B. 108, 11001–11010 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ajayaghosh, A., Praveen, V. K. & Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 37, 109–122 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hall, J., Renger, T., Picorel, R. & Krausz, E. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. Biochim. Biophys. Acta Bioenerg. 1857, 115–128 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 09, revision D.01 (Gaussian, 2013).

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?