Zephyrnet Logo

Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets

Date:

  • Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Ren, T., Patel, M. & Rlok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Snel, R. Olefins from syngas. Catal. Rev. Sci. Eng. 29, 361–445 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Torres Galvis, H. M. & de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal. 3, 2130–2149 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Pan, X., Jiao, F., Miao, D. & Bao, X. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis. Chem. Rev. 121, 6588–6609 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. 55, 4725–4728 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Wang, P. et al. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer–Tropsch catalysts. Sci. Adv. 4, eaau2947 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat. Catal. 1, 787–793 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 371, 610–613 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Soled, S., Iglesia, E. & Fiato, R. A. Activity and selectivity control in iron catalyzed Fischer–Tropsch synthesis. Catal. Lett. 7, 271–280 (1990).

    CAS 
    Article 

    Google Scholar
     

  • Shroff, M. D. et al. Activation of precipitated iron Fischer–Tropsch synthesis catalysts. J. Catal. 156, 185–207 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Zhai, P. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Koeken, A. C. J., Torres Galvis, H. M., Davidian, T., Ruitenbeek, M. & de Jong, K. P. Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas. Angew. Chem. Int. Ed. 51, 7190–7193 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Torres Galvis, H. M. et al. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 134, 16207–16215 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y., Chen, J. F., Bao, J. & Zhang, Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal. 5, 3905–3909 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lohitharn, N., Goodwin, J. G. Jr. & Lotero, E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. J. Catal. 255, 104–113 (2008).

    CAS 
    Article 

    Google Scholar
     

  • de Smit, E. & Weckhuysen, B. M. The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 37, 2758–2781 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, F. et al. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. 57, 4692–4696 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, Y. et al. Role of manganese oxide in syngas conversion to light olefins. ACS Catal. 7, 2800–2804 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X. et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34. ACS Catal. 10, 8303–8314 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, X. et al. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal. 6, 2163–2177 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, B. et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts. Chem 3, 323–333 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, K. et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem 3, 334–347 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Yang, J., Pan, X., Jiao, F., Li, J. & Bao, X. Direct conversion of syngas to aromatics. Chem. Commun. 53, 11146–11149 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Botes, F. G. & Böhringer The addition of HZSM-5 to the Fischer–Tropsch process for improved gasoline production. Appl. Catal. A Gen. 267, 217–225 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Gwagwa, X. Y. & van Steen, E. Migration of potassium in an Fe2O3/H-ZSM-5 composite catalyst. Chem. Eng. Technol. 32, 826–829 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Effect of addition of zeolite to iron-based activated-carbon-supported catalyst for Fischer–Tropsch synthesis in separate beds and mixed beds. Catal. Today 198, 280–288 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Karre, A. V., Kababji, A., Kugler, E. L. & Dadyburjor, D. B. Effect of time on stream and temperature on upgraded products from Fischer–Tropsch synthesis when zeolite is added to iron-based activated-carbon-supported catalyst. Catal. Today 214, 82–89 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Li, B. et al. In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. J. Am. Chem. Soc. 135, 1181–1184 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Weber, J. L. et al. Effect of proximity and support material on deactivation of bifunctional catalysts for the conversion of synthesis gas to olefins and aromatics. Catal. Today 342, 161–166 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Weber, J. L. et al. Conversion of synthesis gas to aromatics at medium temperature with a Fischer Tropsch and ZSM-5 dual catalyst bed. Catal. Today 369, 175–183 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Importance of zeolite wettability for selective hydrogenation of furfural over Pd@Zeolite catalysts. ACS Catal. 8, 474–481 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Activationand spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Niemantsverdriet, J. W., der Kraan, A. M. V., Dijk, W. L. W. & der Baan, H. S. V. Behavior of metallic iron catalysts during Fischer–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J. Phys. Chem. 84, 3363–3370 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Li, S., Li, A., Krishnamoorthy, S. & Iglesia, E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron based Fischer–Tropsch synthesis catalysts. Catal. Lett. 77, 197–205 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Efremov, A. A. & Davydov, A. A. Infrared spectra of π-complexes of propylene and ethylene on TiO2. React. Kinet. Catal. Lett. 15, 327–331 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Ji, W., Chen, Y., Shen, S., Li, S. & Wang, H. FTIR study of adsorption of CO, NO and C2H4 and reaction of CO + H2 on the well-dispersed FeOxγ-Al2O3 and FeOx/TiO2(a) catalysts. Appl. Surf. Sci. 99, 151–160 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Leclerc, H. et al. Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Phys. Chem. Chem. Phys. 13, 11748–11756 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Li, M., Nawaz, M. A., Song, G., Zaman, W. Q. & Liu, D. Influential role of elemental migration in a composite iron–zeolite catalyst for the synthesis of aromatics from syngas. Ind. Eng. Chem. Res. 59, 9043–9054 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, T. et al. Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite. ACS Catal. 11, 3553–3574 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cnudde, P. et al. Experimental and theoretical evidence for the promotional effect of acid sites on the diffusion of alkenes through small-pore zeolites. Angew. Chem. Int. Ed. 60, 10016–10022 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Smit, B. & Maesen, T. L. M. Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008).

    CAS 
    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?