Zephyrnet Logo

Electrochemically modulated interaction of MXenes with microwaves

Date:

  • Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photon. 15, 493–498 (2021).

    Article  CAS  Google Scholar 

  • Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

    Article  CAS  Google Scholar 

  • Ergoktas, M. S. et al. Topological engineering of terahertz light using electrically tunable exceptional point singularities. Science 376, 184–188 (2022).

    Article  CAS  Google Scholar 

  • Peng, J. et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv. 5, eaaw2205 (2019).

    Article  CAS  Google Scholar 

  • Xu, J., Mandal, J. & Raman, A. P. Broadband directional control of thermal emission. Science 372, 393–397 (2021).

    Article  CAS  Google Scholar 

  • Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7, 11809 (2016).

    Article  CAS  Google Scholar 

  • Han, M. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 1900267 (2019).

    Article  Google Scholar 

  • Qiu, L., Li, D. & Cheng, H.-M. Structural control of graphene-based materials for unprecedented performance. ACS Nano 12, 5085–5092 (2018).

    Article  CAS  Google Scholar 

  • Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).

    Article  CAS  Google Scholar 

  • Inoue, T., De Zoysa, M., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).

    Article  CAS  Google Scholar 

  • Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  CAS  Google Scholar 

  • Fang, Y., Ge, Y., Wang, C. & Zhang, H. Mid-infrared photonics using 2D materials: status and challenges. Laser Photon. Rev. 14, 1900098 (2020).

    Article  CAS  Google Scholar 

  • Balci, O., Polat, E. O., Kakenov, N. & Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).

    Article  CAS  Google Scholar 

  • VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).

    Article  CAS  Google Scholar 

  • Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    Article  CAS  Google Scholar 

  • Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    Article  CAS  Google Scholar 

  • Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    Article  CAS  Google Scholar 

  • Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  • Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  • VahidMohammadi, A., Mojtabavi, M., Caffrey, N. M., Wanunu, M. & Beidaghi, M. Assembling 2D MXenes into highly stable pseudocapacitive electrodes with high power and energy densities. Adv. Mater. 31, 1806931 (2019).

    Article  Google Scholar 

  • Fleischmann, S. et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Surface redox pseudocapacitance of partially oxidized titanium carbide MXene in water-in-salt electrolyte. ACS Energy Lett. 7, 30–35 (2021).

  • Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  Google Scholar 

  • Zhao, S. et al. Flexible Nb4C3Tx film with large interlayer spacing for high‐performance supercapacitors. Adv. Func. Mater. 30, 2000815 (2020).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).

    Article  CAS  Google Scholar 

  • Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).

    Article  CAS  Google Scholar 

  • Mu, X. et al. Revealing the pseudo‐intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Func. Mater. 29, 1902953 (2019).

    Article  Google Scholar 

  • Sarycheva, A. & Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020).

    Article  CAS  Google Scholar 

  • Tang, J. et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. 131, 18013–18019 (2019).

    Article  Google Scholar 

  • Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article  CAS  Google Scholar 

  • Che, R. C., Peng, L. M., Duan, X. F., Chen, Q. & Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004).

    Article  CAS  Google Scholar 

  • Sun, H. et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img