Zephyrnet Logo

Distant spin entanglement via fast and coherent electron shuttling

Date:

  • 1.

    Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    CAS  Article  Google Scholar 

  • 2.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  Google Scholar 

  • 3.

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    CAS  Article  Google Scholar 

  • 4.

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS  Article  Google Scholar 

  • 5.

    Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  Google Scholar 

  • 6.

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    CAS  Article  Google Scholar 

  • 7.

    Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

    CAS  Article  Google Scholar 

  • 8.

    Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

    CAS  Article  Google Scholar 

  • 9.

    Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012).

    CAS  Article  Google Scholar 

  • 10.

    Kandel, Y. P. et al. Coherent spin-state transfer via Heisenberg exchange. Nature 573, 553–557 (2019).

    CAS  Article  Google Scholar 

  • 11.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    CAS  Article  Google Scholar 

  • 12.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    CAS  Article  Google Scholar 

  • 13.

    Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2020).

    CAS  Article  Google Scholar 

  • 15.

    Landig, A. J. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    CAS  Article  Google Scholar 

  • 17.

    Baart, T. A., Fujita, T., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent spin-exchange via a quantum mediator. Nat. Nanotechnol. 12, 26–30 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Malinowski, F. K. et al. Fast spin exchange across a multielectron mediator. Nat. Commun. 10, 1196 (2019).

    Article  Google Scholar 

  • 19.

    Flentje, H. et al. Coherent long-distance displacement of individual electron spins. Nat. Commun. 8, 501 (2017).

  • 20.

    Fujita, T., Baart, T. A., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. Coherent shuttle of electron-spin states. npj Quant. Inf. 3, 22 (2017).

    Article  Google Scholar 

  • 21.

    Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional quantum dot array. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-00816-w (2020).

  • 22.

    McNeil, R. P. G. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    CAS  Article  Google Scholar 

  • 24.

    Takada, S. et al. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun. 10, 4557 (2019).

    Article  Google Scholar 

  • 25.

    Talyanskii, V. I. et al. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys. Rev. B 56, 15180–15184 (1997).

    CAS  Article  Google Scholar 

  • 26.

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    CAS  Article  Google Scholar 

  • 27.

    Meunier, T. et al. Nondestructive measurement of electron spins in a quantum dot. Phys. Rev. B 74, 195303 (2006).

    Article  Google Scholar 

  • 28.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  Article  Google Scholar 

  • 29.

    Bertrand, B. et al. Injection of a single electron from static to moving quantum dots. Nanotechnology 27, 214001 (2016).

    Article  Google Scholar 

  • 30.

    Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

  • 31.

    Stotz, J. A. H., Hey, R., Santos, P. V. & Ploog, K. H. Coherent spin transport through dynamic quantum dots. Nat. Mater. 4, 585–588 (2005).

    CAS  Article  Google Scholar 

  • 32.

    Sanada, H. et al. Acoustically induced spin-orbit interactions revealed by two-dimensional imaging of spin transport in GaAs. Phys. Rev. Lett. 106, 216602 (2011).

  • 33.

    Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

    Article  Google Scholar 

  • 34.

    Huang, P. & Hu, X. Spin qubit relaxation in a moving quantum dot. Phys. Rev. B 88, 075301 (2013).

    Article  Google Scholar 

  • 35.

    Nixon, J. A. & Davies, J. H. Potential fluctuations in heterostructure devices. Phys. Rev. B 41, 7929–7932 (1990).

    CAS  Article  Google Scholar 

  • 36.

    Yoneda, J. et al. Coherent spin qubit transport in silicon. Preprint at https://arxiv.org/abs/2008.04020 (2020).

  • 37.

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    CAS  Article  Google Scholar 

  • 38.

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    CAS  Article  Google Scholar 

  • 39.

    Büyükköse, S., Vratzov, B., van der Veen, J., Santos, P. V. & van der Wiel, W. G. Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in silicon. Appl. Phys. Lett. 102, 013112 (2013).

    Article  Google Scholar 

  • 40.

    Barros, A. D., Batista, P. D., Tahraoui, A., Diniz, J. A. & Santos, P. V. Ambipolar acoustic transport in silicon. J. Appl. Phys. 112, 013714 (2012).

    Article  Google Scholar 

  • 41.

    Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).

    Article  Google Scholar 

  • 42.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent. npj Quant. Inf. 3, 34 (2017).

  • Source: https://www.nature.com/articles/s41565-021-00846-y

    spot_img

    VC Cafe

    VC Cafe

    Latest Intelligence

    spot_img