Connect with us

Quantum

D-Wave sticks with its approach to quantum computing

Avatar

Published

on

Earlier this month, at the WebSummit conference in Lisbon, D-Wave and Volkswagen teamed up to manage a fleet of buses using a new system that, among other things, used D-Wave’s quantum technology to help generate the most efficient routes. While D-Wave’s 2000Q only played a small part in this process, it’s nevertheless a sign that quantum computing is slowly getting ready for production use and that D-Wave’s approach, somewhat controversial in its early days, is paying off.

Unlike other players in the quantum computing market, D-Wave always bet on quantum annealing as its core technology. This technology lends itself perfectly to optimization problems like the kind of routing problem the company tackled with VW, as well as sampling problems, which, in the context of quantum computing, are useful for improving machine learning models, for example. Depending on their complexity, some of these problems are nearly impossible to solve with classical computers (at least in a reasonable time).

Grossly simplified, with quantum annealing, you are building a system that almost naturally optimizes itself for the lowest energy state, which then represents the solution to your problem.

Microsoft, IBM, Rigetti and others are mostly focused on building gate-model quantum computers and they are starting to see results (with the exception of Microsoft, which doesn’t have a working computer just yet and is hence betting on partnerships for the time being). But this is also a far more complex problem. And while you can’t really compare these technologies qubit to qubit, it’s telling that D-Wave’s latest machines, the Advantage, will feature 5,000 qubits — while the state of the art among the gate-model proponents is just over 50. Scaling these machines up is hard, though, especially given that the industry is still trying to figure out how to manage the noise issues.

D-Wave remains the only major player that’s betting on annealing, but the company’s CEO Vern Brownell remains optimistic that this is the right approach. “We feel more strongly about our decision to do quantum annealing now that there are a few companies that actually have quantum computers that people can access,” he said in an interview earlier this month.

“We have customers, Volkswagen included, that have run problems against those other computers and seeing what they can actually do and it’s vastly different. Our capability is many orders of magnitude faster for most problems than what you can do with other quantum computers. And that is because of the choice of quantum annealing. And that is because quantum healing is more robust to errors.” Error correction, he argues, remains the fundamental problem, and will hamper the performance of these systems for the foreseeable future. “And in order to move into the enterprise or any kind of practical application, that error correction needs to be wrestled with,” he noted.

 

Read more: https://techcrunch.com/2019/11/15/d-wave-sticks-with-its-approach-to-quantum-computing/

Quantum

On maximum-likelihood decoding with circuit-level errors

Avatar

Published

on

Leonid P. Pryadko

Department of Physics & Astronomy, University of California, Riverside, California 92521, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Error probability distribution associated with a given Clifford measurement circuit is described exactly in terms of the circuit error-equivalence group, or the circuit subsystem code previously introduced by Bacon, Flammia, Harrow, and Shi. This gives a prescription for maximum-likelihood decoding with a given measurement circuit. Marginal distributions for subsets of circuit errors are also analyzed; these generate a family of related asymmetric LDPC codes of varying degeneracy. More generally, such a family is associated with any quantum code. Implications for decoding highly-degenerate quantum codes are discussed.

► BibTeX data

► References

[1] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A 52, R2493 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.R2493

[2] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, and K. Bertels, “The engineering challenges in quantum computing,” in Design, Automation Test in Europe Conference Exhibition (DATE), 2017 (2017) pp. 836–845.
https:/​/​doi.org/​10.23919/​DATE.2017.7927104

[3] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum accuracy threshold for concatenated distance-3 codes,” Quantum Inf. Comput. 6, 97–165 (2006), quant-ph/​0504218.
arXiv:quant-ph/0504218
http:/​/​dl.acm.org/​citation.cfm?id=2011665.2011666

[4] David S. Wang, Austin G. Fowler, and Lloyd C. L. Hollenberg, “Surface code quantum computing with error rates over $1%$,” Phys. Rev. A 83, 020302 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.83.020302

[5] Christopher T. Chubb and Steven T. Flammia, “Statistical mechanical models for quantum codes with correlated noise,” (2018), unpublished, 1809.10704.
arXiv:1809.10704

[6] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” J. Math. Phys. 43, 4452 (2002).
https:/​/​doi.org/​10.1063/​1.1499754

[7] Austin G. Fowler, Adam C. Whiteside, and Lloyd C. L. Hollenberg, “Towards practical classical processing for the surface code,” Phys. Rev. Lett. 108, 180501 (2012a).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.180501

[8] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86, 032324 (2012b).
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324

[9] Austin G. Fowler, Adam C. Whiteside, Angus L. McInnes, and Alimohammad Rabbani, “Topological code autotune,” Phys. Rev. X 2, 041003 (2012c).
https:/​/​doi.org/​10.1103/​PhysRevX.2.041003

[10] Christopher Chamberland, Guanyu Zhu, Theodore J. Yoder, Jared B. Hertzberg, and Andrew W. Cross, “Topological and subsystem codes on low-degree graphs with flag qubits,” Phys. Rev. X 10, 011022 (2020a).
https:/​/​doi.org/​10.1103/​PhysRevX.10.011022

[11] Christopher Chamberland, Aleksander Kubica, Theodore J Yoder, and Guanyu Zhu, “Triangular color codes on trivalent graphs with flag qubits,” New Journal of Physics 22, 023019 (2020b).
https:/​/​doi.org/​10.1088/​1367-2630/​ab68fd

[12] Christophe Vuillot, Lingling Lao, Ben Criger, Carmen García Almudéver, Koen Bertels, and Barbara M. Terhal, “Code deformation and lattice surgery are gauge fixing,” New Journal of Physics 21, 033028 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​ab0199

[13] Giacomo Torlai and Roger G. Melko, “Neural decoder for topological codes,” Phys. Rev. Lett. 119, 030501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.030501

[14] S. Krastanov and L. Jiang, “Deep neural network probabilistic decoder for stabilizer codes,” Scientific Reports 7, 11003 (2017), 1705.09334.
https:/​/​doi.org/​10.1038/​s41598-017-11266-1
arXiv:1705.09334

[15] N. P. Breuckmann and X. Ni, “Scalable neural network decoders for higher dimensional quantum codes,” Quantum 2, 68 (2018), 1710.09489.
https:/​/​doi.org/​10.22331/​q-2018-05-24-68
arXiv:1710.09489

[16] Zhih-Ahn Jia, Yuan-Hang Zhang, Yu-Chun Wu, Liang Kong, Guang-Can Guo, and Guo-Ping Guo, “Efficient machine-learning representations of a surface code with boundaries, defects, domain walls, and twists,” Phys. Rev. A 99, 012307 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.012307

[17] Paul Baireuther, Thomas E. O’Brien, Brian Tarasinski, and Carlo W. J. Beenakker, “Machine-learning-assisted correction of correlated qubit errors in a topological code,” Quantum 2, 48 (2018).
https:/​/​doi.org/​10.22331/​q-2018-01-29-48

[18] Christopher Chamberland and Pooya Ronagh, “Deep neural decoders for near term fault-tolerant experiments,” Quantum Science and Technology 3, 044002 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aad1f7

[19] P. Baireuther, M. D. Caio, B. Criger, C. W. J. Beenakker, and T. E. O’Brien, “Neural network decoder for topological color codes with circuit level noise,” New Journal of Physics 21, 013003 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​aaf29e

[20] Nishad Maskara, Aleksander Kubica, and Tomas Jochym-O’Connor, “Advantages of versatile neural-network decoding for topological codes,” Phys. Rev. A 99, 052351 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.052351

[21] D. Bacon, S. T. Flammia, A. W. Harrow, and J. Shi, “Sparse quantum codes from quantum circuits,” in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15 (ACM, New York, NY, USA, 2015) pp. 327–334, 1411.3334.
https:/​/​doi.org/​10.1145/​2746539.2746608
arXiv:1411.3334

[22] D. Bacon, S. T. Flammia, A. W. Harrow, and J. Shi, “Sparse quantum codes from quantum circuits,” IEEE Transactions on Information Theory 63, 2464–2479 (2017).
https:/​/​doi.org/​10.1109/​TIT.2017.2663199

[23] Jozef Strečka, “Generalized algebraic transformations and exactly solvable classical-quantum models,” Physics Letters A 374, 3718 – 3722 (2010).
https:/​/​doi.org/​10.1016/​j.physleta.2010.07.030

[24] Christopher Chamberland and Michael E. Beverland, “Flag fault-tolerant error correction with arbitrary distance codes,” Quantum 2, 53 (2018), 1708.02246.
https:/​/​doi.org/​10.22331/​q-2018-02-08-53
arXiv:1708.02246

[25] C. Chamberland and A. W. Cross, “Fault-tolerant magic state preparation with flag qubits,” Quantum 3, 143 (2019), 1811.00566.
https:/​/​doi.org/​10.22331/​q-2019-05-20-143
arXiv:1811.00566

[26] Rui Chao and Ben W. Reichardt, “Quantum error correction with only two extra qubits,” Phys. Rev. Lett. 121, 050502 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.050502

[27] Héctor Bombín, “Single-shot fault-tolerant quantum error correction,” Phys. Rev. X 5, 031043 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.031043

[28] Benjamin J. Brown, Naomi H. Nickerson, and Dan E. Browne, “Fault-tolerant error correction with the gauge color code,” Nature Communications 7, 12302 (2016).
https:/​/​doi.org/​10.1038/​ncomms12302

[29] Earl T. Campbell, “A theory of single-shot error correction for adversarial noise,” Quantum Science and Technology 4, 025006 (2019), 1805.09271.
https:/​/​doi.org/​10.1088/​2058-9565/​aafc8f
arXiv:1805.09271

[30] I. Dumer, A. A. Kovalev, and L. P. Pryadko, “Thresholds for correcting errors, erasures, and faulty syndrome measurements in degenerate quantum codes,” Phys. Rev. Lett. 115, 050502 (2015), 1412.6172.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.050502
arXiv:1412.6172

[31] A. A. Kovalev, S. Prabhakar, I. Dumer, and L. P. Pryadko, “Numerical and analytical bounds on threshold error rates for hypergraph-product codes,” Phys. Rev. A 97, 062320 (2018), 1804.01950.
https:/​/​doi.org/​10.1103/​PhysRevA.97.062320
arXiv:1804.01950

[32] David Poulin, “Stabilizer formalism for operator quantum error correction,” Phys. Rev. Lett. 95, 230504 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.230504

[33] Dave Bacon, “Operator quantum error-correcting subsystems for self-correcting quantum memories,” Phys. Rev. A 73, 012340 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.012340

[34] Daniel Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, Caltech (1997).
arXiv:quant-ph/9705052

[35] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over GF(4),” IEEE Trans. Info. Theory 44, 1369–1387 (1998).
https:/​/​doi.org/​10.1109/​18.681315

[36] Jeroen Dehaene and Bart De Moor, “Clifford group, stabilizer states, and linear and quadratic operations over GF(2),” Phys. Rev. A 68, 042318 (2003).
https:/​/​doi.org/​10.1103/​PhysRevA.68.042318

[37] Scott Aaronson and Daniel Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev. A 70, 052328 (2004).
https:/​/​doi.org/​10.1103/​PhysRevA.70.052328

[38] Bin Dai, Shilin Ding, and Grace Wahba, “Multivariate Bernoulli distribution,” Bernoulli 19, 1465–1483 (2013).
https:/​/​doi.org/​10.3150/​12-BEJSP10

[39] F. Wegner, “Duality in generalized Ising models and phase transitions without local order parameters,” J. Math. Phys. 2259, 12 (1971).
https:/​/​doi.org/​10.1063/​1.1665530

[40] A. J. Landahl, J. T. Anderson, and P. R. Rice, “Fault-tolerant quantum computing with color codes,” (2011), presented at QIP 2012, December 12 to December 16, arXiv:1108.5738.
arXiv:arXiv:1108.5738

[41] A. A. Kovalev and L. P. Pryadko, “Spin glass reflection of the decoding transition for quantum error-correcting codes,” Quantum Inf. & Comp. 15, 0825 (2015), arXiv:1311.7688.
arXiv:arXiv:1311.7688

[42] Lars Onsager, “Crystal statistics. I. a two-dimensional model with an order-disorder transition,” Phys. Rev. 65, 117–149 (1944).
https:/​/​doi.org/​10.1103/​PhysRev.65.117

[43] Shigeo Naya, “On the spontaneous magnetizations of honeycomb and Kagomé Ising lattices,” Progress of Theoretical Physics 11, 53–62 (1954).
https:/​/​doi.org/​10.1143/​PTP.11.53

[44] Michael E. Fisher, “Transformations of Ising models,” Phys. Rev. 113, 969–981 (1959).
https:/​/​doi.org/​10.1103/​PhysRev.113.969

[45] Sergey Bravyi, Martin Suchara, and Alexander Vargo, “Efficient algorithms for maximum likelihood decoding in the surface code,” Phys. Rev. A 90, 032326 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.032326

[46] Markus Hauru, Clement Delcamp, and Sebastian Mizera, “Renormalization of tensor networks using graph-independent local truncations,” Phys. Rev. B 97, 045111 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.045111

[47] M. de Koning, Wei Cai, A. Antonelli, and S. Yip, “Efficient free-energy calculations by the simulation of nonequilibrium processes,” Computing in Science Engineering 2, 88–96 (2000).
https:/​/​doi.org/​10.1109/​5992.841802

[48] Charles H. Bennett, “Efficient estimation of free energy differences from Monte Carlo data,” Journal of Computational Physics 22, 245–268 (1976).
https:/​/​doi.org/​10.1016/​0021-9991(76)90078-4

[49] Tobias Preis, Peter Virnau, Wolfgang Paul, and Johannes J. Schneider, “GPU accelerated monte carlo simulation of the 2d and 3d ising model,” Journal of Computational Physics 228, 4468 – 4477 (2009).
https:/​/​doi.org/​10.1016/​j.jcp.2009.03.018

[50] A. Gilman, A. Leist, and K. A. Hawick, “3D lattice Monte Carlo simulations on FPGAs,” in Proceedings of the International Conference on Computer Design (CDES) (The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2013).

[51] Kun Yang, Yi-Fan Chen, Georgios Roumpos, Chris Colby, and John Anderson, “High performance Monte Carlo simulation of Ising model on TPU clusters,” (2019), unpublished, 1903.11714.
arXiv:1903.11714

[52] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum codes,” Quant. Info. and Comp. 8, 987 (2008), arXiv:0801.1241.
arXiv:arXiv:0801.1241

[53] Ye-Hua Liu and David Poulin, “Neural belief-propagation decoders for quantum error-correcting codes,” Phys. Rev. Lett. 122, 200501 (2019), 1811.07835.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.200501
arXiv:1811.07835

[54] Alex Rigby, J. C. Olivier, and Peter Jarvis, “Modified belief propagation decoders for quantum low-density parity-check codes,” Phys. Rev. A 100, 012330 (2019), 1903.07404.
https:/​/​doi.org/​10.1103/​PhysRevA.100.012330
arXiv:1903.07404

[55] A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework,” Phys. Rev. A 84, 062319 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.062319

[56] Pavithran Iyer and David Poulin, “Hardness of decoding quantum stabilizer codes,” IEEE Transactions on Information Theory 61, 5209–5223 (2015), arXiv:1310.3235.
https:/​/​doi.org/​10.1109/​TIT.2015.2422294
arXiv:arXiv:1310.3235

[57] E. A. Kruk, “Decoding complexity bound for linear block codes,” Probl. Peredachi Inf. 25, 103–107 (1989), (In Russian).
http:/​/​mi.mathnet.ru/​eng/​ppi665

[58] J. T. Coffey and R. M. Goodman, “The complexity of information set decoding,” IEEE Trans. Info. Theory 36, 1031 –1037 (1990).
https:/​/​doi.org/​10.1109/​18.57202

[59] Andrew J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Transactions on Information Theory 13, 260–269 (1967).
https:/​/​doi.org/​10.1109/​TIT.1967.1054010

[60] R. G. Gallager, Low-Density Parity-Check Codes (M.I.T. Press, Cambridge, Mass., 1963).
https:/​/​doi.org/​doi=10.1.1.147.683

[61] M. P. C. Fossorier, “Iterative reliability-based decoding of low-density parity check codes,” IEEE Journal on Selected Areas in Communications 19, 908–917 (2001).
https:/​/​doi.org/​10.1109/​49.924874

[62] Thomas J. Richardson and Rüdiger L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” Information Theory, IEEE Transactions on 47, 599–618 (2001).
https:/​/​doi.org/​10.1109/​18.910577

[63] David Declerq, Marc Fossorier, and Ezio Biglieri, eds., Channel Coding. Theory, Algorithms, and Applications (Academic Press Library in Mobile and Wireless Communications, San Francisco, 2014).
https:/​/​doi.org/​10.1016/​C2011-0-07211-3

[64] Weilei Zeng and Leonid P. Pryadko, “Iterative decoding of row-reduced quantum LDPC codes,” (2020), unpublished.

[65] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam, 1981).

[66] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier, “Efficient decoding of random errors for quantum expander codes,” (2017), unpublished, 1711.08351.
arXiv:1711.08351

[67] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier, “Constant overhead quantum fault-tolerance with quantum expander codes,” in 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018 (2018) pp. 743–754.
https:/​/​doi.org/​10.1109/​FOCS.2018.00076

[68] A. Grospellier and A. Krishna, “Numerical study of hypergraph product codes,” (2018), unpublished, 1810.03681.
arXiv:1810.03681

[69] Pavel Panteleev and Gleb Kalachev, “Degenerate quantum LDPC codes with good finite length performance,” (2019), unpublished, 1904.02703.
arXiv:1904.02703

[70] Antoine Grospellier, Lucien Grouès, Anirudh Krishna, and Anthony Leverrier, “Combining hard and soft decoders for hypergraph product codes,” (2020), unpublished, arXiv:2004.11199.
arXiv:arXiv:2004.11199

Cited by

[1] Nicolas Delfosse, Ben W. Reichardt, and Krysta M. Svore, “Beyond single-shot fault-tolerant quantum error correction”, arXiv:2002.05180.

The above citations are from SAO/NASA ADS (last updated successfully 2020-08-07 05:01:01). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2020-08-07 05:01:00).

Source: https://quantum-journal.org/papers/q-2020-08-06-304/

Continue Reading

Quantum

A robust W-state encoding for linear quantum optics

Avatar

Published

on

Madhav Krishnan Vijayan1, Austin P. Lund2, and Peter P. Rohde1

1Centre for Quantum Software & Information (UTS:QSI), University of Technology Sydney, Sydney NSW, Australia
2Centre for Quantum Computation & Communications Technology, School of Mathematics & Physics, The University of Queensland, St Lucia QLD, Australia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Error-detection and correction are necessary prerequisites for any scalable quantum computing architecture. Given the inevitability of unwanted physical noise in quantum systems and the propensity for errors to spread as computations proceed, computational outcomes can become substantially corrupted. This observation applies regardless of the choice of physical implementation. In the context of photonic quantum information processing, there has recently been much interest in $textit{passive}$ linear optics quantum computing, which includes boson-sampling, as this model eliminates the highly-challenging requirements for feed-forward via fast, active control. That is, these systems are $textit{passive}$ by definition. In usual scenarios, error detection and correction techniques are inherently $textit{active}$, making them incompatible with this model, arousing suspicion that physical error processes may be an insurmountable obstacle. Here we explore a photonic error-detection technique, based on W-state encoding of photonic qubits, which is entirely passive, based on post-selection, and compatible with these near-term photonic architectures of interest. We show that this W-state redundant encoding techniques enables the suppression of dephasing noise on photonic qubits via simple fan-out style operations, implemented by optical Fourier transform networks, which can be readily realised today. The protocol effectively maps dephasing noise into heralding failures, with zero failure probability in the ideal no-noise limit. We present our scheme in the context of a single photonic qubit passing through a noisy communication or quantum memory channel, which has not been generalised to the more general context of full quantum computation.

► BibTeX data

► References

[1] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11, page 333, 2011. 10.1364/​qim.2014.qth1a.2.
https:/​/​doi.org/​10.1364/​qim.2014.qth1a.2

[2] Scott Aaronson and Alex Arkhipov. Bosonsampling is far from uniform. Quantum Information and Computation, 14: 1383, 2014.

[3] Scott Aaronson and Daniel J. Brod. BosonSampling with lost photons. Physical Review A, 93, 2016. 10.1103/​physreva.93.012335.
https:/​/​doi.org/​10.1103/​physreva.93.012335

[4] Alex Arkhipov. BosonSampling is robust against small errors in the network matrix. Physical Review A, 92, 2015. 10.1103/​physreva.92.062326.
https:/​/​doi.org/​10.1103/​physreva.92.062326

[5] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467: 459, 2011. 10.1098/​rspa.2010.0301.
https:/​/​doi.org/​10.1098/​rspa.2010.0301

[6] Daniel E. Browne, Jens Eisert, Stefan Scheel, and Martin B. Plenio. Driving non-gaussian to gaussian states with linear optics. Physical Review A, 67, 2003. 10.1103/​physreva.67.062320.
https:/​/​doi.org/​10.1103/​physreva.67.062320

[7] L-M Duan, Mikhail D. Lukin, J. Ignacio Cirac, and Peter Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414: 413, 2001. 10.1038/​35106500.
https:/​/​doi.org/​10.1038/​35106500

[8] Wolfgang Dür, Guifre Vidal, and J. Ignacio Cirac. Three qubits can be entangled in two inequivalent ways. Physical Review A, 62: 062314, 2000. 10.1103/​physreva.62.062314.
https:/​/​doi.org/​10.1103/​physreva.62.062314

[9] Jens Eisert, Stefan Scheel, and Martin B. Plenio. Distilling gaussian states with gaussian operations is impossible. Physical Review Letters, 89: 137903, 2002. 10.1103/​physrevlett.89.137903.
https:/​/​doi.org/​10.1103/​physrevlett.89.137903

[10] Fabian Ewert and Peter van Loock. Ultrafast fault-tolerant long-distance quantum communication with static linear optics. Phys. Rev. A, 95: 012327, Jan 2017. 10.1103/​PhysRevA.95.012327.
https:/​/​doi.org/​10.1103/​PhysRevA.95.012327

[11] Nicolas Gisin, Noah Linden, Serge Massar, and S Popescu. Error filtration and entanglement purification for quantum communication. Physical Review A, 72: 012338, 2005. 10.1103/​physreva.72.012338.
https:/​/​doi.org/​10.1103/​physreva.72.012338

[12] Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549: 203, 2017. 10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[13] YuXiao Jiang, PengLiang Guo, ChengYan Gao, HaiBo Wang, Faris Alzahrani, Aatef Hobiny, and FuGuo Deng. Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Science China Physics, Mechanics & Astronomy, 60: 120312, 2017. 10.1007/​s11433-017-9091-0.
https:/​/​doi.org/​10.1007/​s11433-017-9091-0

[14] Gil Kalai and Guy Kindler. Gaussian Noise Sensitivity and BosonSampling, 2014. https:/​/​arxiv.org/​abs/​1409.3093.
arXiv:1409.3093

[15] Emanuel Knill, Raymond Laflamme, and Gerald Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409: 46, 2001. 10.1038/​35051009.
https:/​/​doi.org/​10.1038/​35051009

[16] Anthony Leverrier and Raúl García-Patrón. Analysis of circuit imperfections in bosonsampling. Quantum Information and Computation, 15: 489, 2015. ISSN 1533.

[17] Xi-Han Li, Fu-Guo Deng, and Hong-Yu Zhou. Faithful qubit transmission against collective noise without ancillary qubits. Applied Physics Letters, 91: 144101, 2007. 10.1063/​1.2794433.
https:/​/​doi.org/​10.1063/​1.2794433

[18] Austin P. Lund, Michael J. Bremner, and Timothy C. Ralph. Quantum sampling problems, bosonsampling and quantum supremacy. NPJ Quantum Information, 3: 15, 2017. 10.1038/​s41534-017-0018-2.
https:/​/​doi.org/​10.1038/​s41534-017-0018-2

[19] Ryan J. Marshman, Austin P. Lund, Peter P. Rohde, and Timothy Cameron Ralph. Passive quantum error correction of linear optics networks through error averaging. Physical Review A, 97: 22324, 2018. 10.1103/​PhysRevA.97.022324.
https:/​/​doi.org/​10.1103/​PhysRevA.97.022324

[20] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000. 10.1017/​cbo9780511976667.
https:/​/​doi.org/​10.1017/​cbo9780511976667

[21] John Preskill. Fault-Tolerant Quantum Computation, chapter 8, page 213. World Scientific, 1998. 10.1142/​9789812385253_0008.
https:/​/​doi.org/​10.1142/​9789812385253_0008

[22] Saleh Rahimi-Keshari, Timothy C. Ralph, and Carlton M. Caves. Sufficient conditions for efficient classical simulation of quantum optics. Physical Review X, 6: 21039, 2016. 10.1103/​PhysRevX.6.021039.
https:/​/​doi.org/​10.1103/​PhysRevX.6.021039

[23] Timothy C. Ralph and Austin P. Lund. Nondeterministic noiseless linear amplification of quantum systems. In AIP Conference Proceedings. AIP, 2009. 10.1063/​1.3131295.
https:/​/​doi.org/​10.1063/​1.3131295

[24] R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical Review Letters, 86: 5188, 2001. 10.1103/​physrevlett.86.5188.
https:/​/​doi.org/​10.1103/​physrevlett.86.5188

[25] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum computation on cluster states. Physical Review A, 68: 022312, 2003. 10.1103/​physreva.68.022312.
https:/​/​doi.org/​10.1103/​physreva.68.022312

[26] Peter P. Rohde and Timothy C. Ralph. Error models for mode-mismatch in linear optics quantum computing. Physical Review A, 73: 062312, 2006. 10.1103/​physreva.73.062312.
https:/​/​doi.org/​10.1103/​physreva.73.062312

[27] Peter P. Rohde and Timothy C. Ralph. Error tolerance of the boson-sampling model for linear optics quantum computing. Physical Review A, 85: 022332, 2012. 10.1103/​physreva.85.022332.
https:/​/​doi.org/​10.1103/​physreva.85.022332

[28] V. S. Shchesnovich. Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer. Physical Review A, 89, 2014. 10.1103/​PhysRevA.89.022333.
https:/​/​doi.org/​10.1103/​PhysRevA.89.022333

[29] Dan Shepherd and Michael J. Bremner. Temporally unstructured quantum computation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465: 1413, 2009. 10.1098/​rspa.2008.0443.
https:/​/​doi.org/​10.1098/​rspa.2008.0443

[30] Peter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52: R2493, 1995. 10.1103/​physreva.52.r2493.
https:/​/​doi.org/​10.1103/​physreva.52.r2493

[31] Peter W. Shor. Fault-tolerant quantum computation. In 37th Symposium on Foundations of Computing, page 56. IEEE Computer Society Press, 1996. 10.1007/​978-1-4939-2864-4_143.
https:/​/​doi.org/​10.1007/​978-1-4939-2864-4_143

[32] Malte C. Tichy. Sampling of partially distinguishable bosons and the relation to the multidimensional permanent. Physical Review A, 91, 2015. 10.1103/​PhysRevA.91.022316.
https:/​/​doi.org/​10.1103/​PhysRevA.91.022316

[33] Nathan Walk, Austin P. Lund, and Timothy C. Ralph. Nondeterministic noiseless amplification via non-symplectic phase space transformations. New Journal of Physics, 15: 73014, 2013. 10.1088/​1367-2630/​15/​7/​073014.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​7/​073014

[34] G. Y. Xiang, Timothy C. Ralph, Austin P. Lund, Nathan Walk, and Geoff J. Pryde. Heralded noiseless linear amplification and distillation of entanglement. Nature Photonics, 4: 316, 2010. 10.1038/​nphoton.2010.35.
https:/​/​doi.org/​10.1038/​nphoton.2010.35

[35] Anton Zeilinger, Michael A. Horne, and D. M. Greenberger. Publ. no. 3135. In NASA Conference, National Aeronautics and Space Administration, Code NTT, 1997.

Cited by

Source: https://quantum-journal.org/papers/q-2020-08-03-303/

Continue Reading

Quantum

Sum-of-squares decompositions for a family of noncontextuality inequalities and self-testing of quantum devices

Avatar

Published

on


Debashis Saha, Rafael Santos, and Remigiusz Augusiak

Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Violation of a noncontextuality inequality or the phenomenon referred to `quantum contextuality’ is a fundamental feature of quantum theory. In this article, we derive a novel family of noncontextuality inequalities along with their sum-of-squares decompositions in the simplest (odd-cycle) sequential-measurement scenario capable to demonstrate Kochen-Specker contextuality. The sum-of-squares decompositions allow us to obtain the maximal quantum violation of these inequalities and a set of algebraic relations necessarily satisfied by any state and measurements achieving it. With their help, we prove that our inequalities can be used for self-testing of three-dimensional quantum state and measurements. Remarkably, the presented self-testing results rely on weaker assumptions than the ones considered in Kochen-Specker contextuality.

► BibTeX data

► References

[1] B. Amaral and M. T. Cunha. Contextuality: The Compatibility-Hypergraph Approach, pages 13–48. Springer Briefs in Mathematics. Springer, Cham, 2018. DOI: 10.1007/​978-3-319-93827-1_2.
https:/​/​doi.org/​10.1007/​978-3-319-93827-1_2

[2] M. Araújo, M. T. Quintino, C. Budroni, M. T. Cunha, and A. Cabello. All noncontextuality inequalities for the $n$-cycle scenario. Phys. Rev. A, 88: 022118, 2013. DOI: 10.1103/​PhysRevA.88.022118.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022118

[3] R. Augusiak, A. Salavrakos, J. Tura, and A. Acín. Bell inequalities tailored to the Greenberger-Horne-Zeilinger states of arbitrary local dimension. New J. Phys., 21(11): 113001, 2019. DOI: 10.1088/​1367-2630/​ab4d9f.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4d9f

[4] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1: 195–200, 1964. DOI: 10.1103/​PhysicsPhysiqueFizika.1.195.
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[5] C. Bamps and S. Pironio. Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing. Phys. Rev. A, 91: 052111, 2015. DOI: 10.1103/​PhysRevA.91.052111.
https:/​/​doi.org/​10.1103/​PhysRevA.91.052111

[6] K. Bharti, M. Ray, A. Varvitsiotis, A. Cabello, and L. Kwek. Local certification of programmable quantum devices of arbitrary high dimensionality. 2019. https:/​/​arxiv.org/​abs/​1911.09448.
arXiv:1911.09448

[7] K. Bharti, M. Ray, A. Varvitsiotis, N. Warsi, A. Cabello, and L. Kwek. Robust Self-Testing of Quantum Systems via Noncontextuality Inequalities. Phys. Rev. Lett., 122: 250403, 2019. DOI: 10.1103/​PhysRevLett.122.250403.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.250403

[8] P. Busch and J. Singh. Lüders theorem for unsharp quantum measurements. Physics Letters A, 249(1): 10–12, 1998. DOI: 10.1016/​S0375-9601(98)00704-X.
https:/​/​doi.org/​10.1016/​S0375-9601(98)00704-X

[9] P. Busch. Unsharp reality and joint measurements for spin observables. Phys. Rev. D, 33: 2253–2261, 1986. DOI: 10.1103/​PhysRevD.33.2253.
https:/​/​doi.org/​10.1103/​PhysRevD.33.2253

[10] A. Cabello. Experimentally Testable State-Independent Quantum Contextuality. Phys. Rev. Lett., 101: 210401, 2008. DOI: 10.1103/​PhysRevLett.101.210401.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.210401

[11] A. Cabello. Simple Explanation of the Quantum Violation of a Fundamental Inequality. Phys. Rev. Lett., 110: 060402, 2013. DOI: 10.1103/​PhysRevLett.110.060402.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.060402

[12] A. Coladangelo, K. Goh, and V. Scarani. All pure bipartite entangled states can be self-tested. Nature Communications, 8(1): 15485, 2017. DOI: 10.1038/​ncomms15485.
https:/​/​doi.org/​10.1038/​ncomms15485

[13] D. Cui, A. Mehta, H. Mousavi, and S. Nezhadi. A generalization of CHSH and the algebraic structure of optimal strategies. 2019.

[14] A. Cabello, S. Severini, and A. Winter. Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett., 112: 040401, 2014. DOI: 10.1103/​PhysRevLett.112.040401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.040401

[15] M. Farkas and J. Kaniewski. Self-testing mutually unbiased bases in the prepare-and-measure scenario. Phys. Rev. A, 99: 032316, 2019. DOI: 10.1103/​PhysRevA.99.032316.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032316

[16] O. Gühne, C. Budroni, A. Cabello, M. Kleinmann, and J. Larsson. Bounding the quantum dimension with contextuality. Phys. Rev. A, 89: 062107, 2014. DOI: 10.1103/​PhysRevA.89.062107.
https:/​/​doi.org/​10.1103/​PhysRevA.89.062107

[17] A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, R. Horodecki, P. Joshi, W. Kłobus, and A. Wójcik. Quantifying Contextuality. Phys. Rev. Lett., 112: 120401, 2014. DOI: 10.1103/​PhysRevLett.112.120401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.120401

[18] M. Howard, J. Wallman, V. Veitch, and J. Emerson. Contextuality supplies the “magic” for quantum computation. Nature, 510(7505): 351–355, 2014. DOI: 10.1038/​nature13460.
https:/​/​doi.org/​10.1038/​nature13460

[19] A. Irfan, K. Mayer, G. Ortiz, and E. Knill. Certified quantum measurement of Majorana fermions. Phys. Rev. A, 101: 032106, 2020. DOI: 10.1103/​PhysRevA.101.032106.
https:/​/​doi.org/​10.1103/​PhysRevA.101.032106

[20] J. Kaniewski. A weak form of self-testing. 2019. https:/​/​arxiv.org/​abs/​1910.00706.
arXiv:1910.00706

[21] P. Kurzyński, A. Cabello, and D. Kaszlikowski. Fundamental Monogamy Relation between Contextuality and Nonlocality. Phys. Rev. Lett., 112: 100401, 2014. DOI: 10.1103/​PhysRevLett.112.100401.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.100401

[22] A. Klyachko, M. Can, S. Binicioğlu, and A. Shumovsky. Simple Test for Hidden Variables in Spin-1 Systems. Phys. Rev. Lett., 101: 020403, 2008. DOI: 10.1103/​PhysRevLett.101.020403.
https:/​/​doi.org/​10.1103/​PhysRevLett.101.020403

[23] S. Kochen and E. Specker. The Problem of Hidden Variables in Quantum Mechanics. In The Logico-Algebraic Approach to Quantum Mechanics, The Western Ontario Series in Philosophy of Science, pages 293–328. Springer Netherlands, 1975. DOI: 10.1007/​978-94-010-1795-4.
https:/​/​doi.org/​10.1007/​978-94-010-1795-4

[24] J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos, and R. Augusiak. Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems. Quantum, 3: 198, 2019. DOI: 10.22331/​q-2019-10-24-198.
https:/​/​doi.org/​10.22331/​q-2019-10-24-198

[25] Y. Liang, R. Spekkens, and H. Wiseman. Specker$’$s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Phys. Rep., 506(1): 1–39, 2011. DOI: 10.1016/​j.physrep.2011.05.001.
https:/​/​doi.org/​10.1016/​j.physrep.2011.05.001

[26] D. Mayers and A. Yao. Self testing quantum apparatus. Quantum Inf. Comput., 4(4): 273–286, 2004. DOI: doi.org/​10.26421/​QIC4.4.
https:/​/​doi.org/​10.26421/​QIC4.4

[27] M. B. Plenio and P. L. Knight. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys., 70: 101–144, 1998. DOI: 10.1103/​RevModPhys.70.101.
https:/​/​doi.org/​10.1103/​RevModPhys.70.101

[28] R. Raussendorf. Contextuality in measurement-based quantum computation. Phys. Rev. A, 88: 022322, 2013. DOI: 10.1103/​PhysRevA.88.022322.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022322

[29] I. Šupić, R. Augusiak, A. Salavrakos, and A. Acín. Self-testing protocols based on the chained bell inequalities. New J. Phys., 18(3): 035013, 2016. DOI: 10.1088/​1367-2630/​18/​3/​035013.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​3/​035013

[30] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio. Bell Inequalities Tailored to Maximally Entangled States. Phys. Rev. Lett., 119: 040402, 2017. DOI: 10.1103/​PhysRevLett.119.040402.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.040402

[31] J. Singh, K. Bharti, and Arvind. Quantum key distribution protocol based on contextuality monogamy. Phys. Rev. A, 95: 062333, 2017. DOI: 10.1103/​PhysRevA.95.062333.
https:/​/​doi.org/​10.1103/​PhysRevA.95.062333

[32] D. Saha, P. Horodecki, and M. Pawłowski. State independent contextuality advances one-way communication. New J. Phys., 21(9): 093057, 2019. DOI: 10.1088/​1367-2630/​ab4149.
https:/​/​doi.org/​10.1088/​1367-2630/​ab4149

[33] D. Saha and R. Ramanathan. Activation of monogamy in nonlocality using local contextuality. Phys. Rev. A, 95: 030104, 2017. DOI: 10.1103/​PhysRevA.95.030104.
https:/​/​doi.org/​10.1103/​PhysRevA.95.030104

[34] S. Sarkar, D. Saha, J. Kaniewski, and R. Augusiak. Self-testing quantum systems of arbitrary local dimension with minimal number of measurements. 2019. https:/​/​arxiv.org/​abs/​1909.12722v2.
arXiv:1909.12722v2

[35] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N. Brunner. Self-testing quantum states and measurements in the prepare-and-measure scenario. Phys. Rev. A, 98: 062307, 2018. DOI: 10.1103/​PhysRevA.98.062307.
https:/​/​doi.org/​10.1103/​PhysRevA.98.062307

[36] Z. Xu, D. Saha, H. Su, M. Pawłowski, and J. Chen. Reformulating noncontextuality inequalities in an operational approach. Phys. Rev. A, 94: 062103, 2016. DOI: 10.1103/​PhysRevA.94.062103.
https:/​/​doi.org/​10.1103/​PhysRevA.94.062103

[37] T. Yang, T. Vértesi, J. Bancal, V. Scarani, and M. Navascués. Robust and Versatile Black-Box Certification of Quantum Devices. Phys. Rev. Lett., 113: 040401, 2014. DOI: 10.1103/​PhysRevLett.113.040401.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.040401

Cited by

Source: https://quantum-journal.org/papers/q-2020-08-03-302/

Continue Reading
Blockchain10 hours ago

Yield Farming Fuels Buzz Around DeFi, but Fundamentals Are Lagging

Blockchain16 hours ago

South Korean Beachgoers Can Now Use Bitcoin to Pay for Services

Blockchain17 hours ago

Price Highs, Bull Runs, and Thieves: Bad Crypto News of the Week

Blockchain17 hours ago

Massive Short Squeeze Prompts Chainlink (LINK) Price to Rally 52%

Blockchain17 hours ago

Cryptocurrency Cards: An Unnecessary Solution That Should Be Stopped

Blockchain19 hours ago

Kava Labs Partners with BNB48 Club to Raise BNB DeFi Awareness

Blockchain20 hours ago

Real Estate Blockchain Firm Ubitquity to Build Tokenized Title Platform

Blockchain22 hours ago

Cryptocurrency News From Japan: August 2 – August 8 in Review

Blockchain23 hours ago

Polish Financial Watchdog Impersonated by Crypto Scammers

Blockchain23 hours ago

Chinese State Grid Launches Blockchain-Based Blackout Insurance Policy

Blockchain24 hours ago

Mobile DeFi and the Shift Toward Self-Sovereignty

Blockchain24 hours ago

BTC and ETH Crypto Derivatives in Demand, Market Expected to Grow Further

Covid191 day ago

Virginia Supreme Court Grants Temporary Moratorium on Evictions

Blockchain1 day ago

Bitcoin is Almost as Big as Bank of America

Blockchain1 day ago

The Price of Bitcoin Is Facing Its Final Resistance Zone Before $15K

AR/VR1 day ago

Virtual Reality: The Solution for the Present and Future of Events — Simlab IT

Cannabis1 day ago

FREE Webinar September 17: Hemp CBD Q&A

Blockchain1 day ago

Richard Stallman: A Discussion on Freedom, Privacy & Cryptocurrencies

AR/VR1 day ago

VR Escape Room Specialist ARVI Partners With HTC Vive to Expand Global Deployment

Blockchain1 day ago

Slow But Steady: FATF Review Highlights Crypto Exchanges’ Struggle to Meet AML Standards

Science1 day ago

Première biopsie liquide à recevoir l’approbation de la FDA pour le profilage complet des tumeurs dans tous les cancers solides, le diagnostic compagnon Guardant360® de Guardant Health gagne en crédibilité auprès des oncologues en Asie, au Moyen-Orient et en Afrique.

Covid191 day ago

2 Out Of 3 Churchgoers: It’s Safe To Resume In-Person Worship

Blockchain1 day ago

Title Token for Blockchain Estate Registry, Part 3

Blockchain1 day ago

Eerily Accurate Analyst Thinks Bitcoin Could Hit $20,000 in the Next 3 Months

Blockchain1 day ago

Ransomware Attacks Demanding Crypto Are Unfortunately Here to Stay

Science1 day ago

Ever-Glory To Report Second Quarter 2020 Earnings on August 14, 2020

Cyber Security2 days ago

Bitglass Security Spotlight: Over 200k Instacart Users’ Data Is Being Sold on Dark Web

Blockchain2 days ago

Analysts Fear an Ethereum Drop to $300 As Price Becomes “Heavy”

Science2 days ago

WeissLaw LLP Reminds GRUB and NBL Shareholders About Its Ongoing Investigations

Science2 days ago

SHAREHOLDER ALERT: WeissLaw LLP Reminds OTEL and DCOM Shareholders About Its Ongoing Investigations

Science2 days ago

SHAREHOLDER ALERT: WeissLaw LLP Reminds MXIM and TORC Shareholders About Its Ongoing Investigations

Science2 days ago

WeissLaw LLP Reminds CNXM and ONDK Shareholders About Its Ongoing Investigations

Blockchain2 days ago

Major South Korean Bank Joins the Crypto Custody Business

Blockchain2 days ago

Bullish Bitcoin Price Trend Intact Even After BTC Retests $11.4K Support

Blockchain2 days ago

BitMEX Leaderboard Trader Fears Bitcoin Could See a Second “Flash Dump”

Blockchain2 days ago

Analyst: Bitcoin May “Teleport” to $13,000 if It Breaks Key Level

Blockchain2 days ago

Adam Back: Some ICOs Funded Useful Research Despite Being Unethical

Covid192 days ago

Gov. Cuomo Clears The Way For In-Person Learning At Schools In New York State

Blockchain2 days ago

An Official North Dakota Cryptocurrency Could Be on the Horizon

Blockchain2 days ago

Law Decoded: Tech as an Arena for International Conflict, July 31–August 7

Trending