Zephyrnet Logo

Current understanding of biological identity at the nanoscale and future prospects

Date:

  • 1.

    Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Lynch, I., Salvati, A. & Dawson, K. A. What does the cell see? Nat. Nanotechnol. 4, 546–547 (2009).

    CAS  Article  Google Scholar 

  • 3.

    Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    CAS  Article  Google Scholar 

  • 4.

    Puri, P. L. et al. A myogenic differentiation checkpoint activated by genotoxic stress. Nat. Genet. 32, 585–593 (2002).

    CAS  Article  Google Scholar 

  • 5.

    Old foes and new enemies. Nat. Immunol. 19, 1147 (2018).

  • 6.

    Maeda, H. & Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 7, e11 (2018).

  • 7.

    Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    Article  CAS  Google Scholar 

  • 9.

    Papoian, T. et al. Secondary pharmacology data to assess potential off-target activity of new drugs: a regulatory perspective. Nat. Rev. Drug Discov. 14, 294–294 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Cao, X.-Z., Merlitz, H., Wu, C.-X., Egorov, S. A. & Sommer, J.-U. Effective pair potentials between nanoparticles induced by single monomers and polymer chains. Soft Matter 9, 5916–5926 (2013).

    CAS  Article  Google Scholar 

  • 11.

    Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 7, 218–227 (2002).

    CAS  Article  Google Scholar 

  • 12.

    Huang, K. & Szlufarska, I. Effect of interfaces on the nearby Brownian motion. Nat. Commun. 6, 8558 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Lara, S. et al. Differential recognition of nanoparticle protein corona and modified low-density lipoprotein by macrophage receptor with collagenous structure. ACS Nano 12, 4930–4937 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA 109, 13626–13631 (2012).

    CAS  Article  Google Scholar 

  • 15.

    Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    CAS  Article  Google Scholar 

  • 16.

    Curk, T., Dobnikar, J. & Frenkel, D. Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl Acad. Sci. USA 114, 7210 (2017).

    CAS  Article  Google Scholar 

  • 17.

    Blaszczyk, M., Harmer, N. J., Chirgadze, D. Y., Ascher, D. B. & Blundell, T. L. Achieving high signal-to-noise in cell regulatory systems: spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. Prog. Biophys. Mol. Biol. 118, 103–111 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Bicknell, B. A., Dayan, P. & Goodhill, G. J. The limits of chemosensation vary across dimensions. Nat. Commun. 6, 7468 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Adami, C. What is information? Philos. Trans. A 374, 20150230 (2016).

    Article  CAS  Google Scholar 

  • 20.

    Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601 (2014).

    Article  CAS  Google Scholar 

  • 21.

    Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    CAS  Article  Google Scholar 

  • 22.

    Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    CAS  Article  Google Scholar 

  • 23.

    Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023 (2014).

    CAS  Article  Google Scholar 

  • 24.

    Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    CAS  Article  Google Scholar 

  • 25.

    Kuokkanen, E., Šuštar, V. & Mattila, P. K. Molecular control of B cell activation and immunological synapse formation. Traffic 16, 311–326 (2015).

    CAS  Article  Google Scholar 

  • 26.

    Dustin, M. L. What counts in the immunological synapse? Mol. Cell 54, 255–262 (2014).

    CAS  Article  Google Scholar 

  • 27.

    Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713 (2003).

    CAS  Article  Google Scholar 

  • 28.

    Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Weil, K. G. J. S., Rowlinson & Widom, B. Molecular Theory of Capillarity, Clarendon Press, Oxford 1982. 327 Seiten, Preis: £ 30,–. Ber. Bunsenges. Phys. Chem. 88, 586–586 (1984).

    Article  Google Scholar 

  • 30.

    Milani, S. et al. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6, 2532–2541 (2012).

    CAS  Article  Google Scholar 

  • 31.

    Monopoli, M. P. et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    CAS  Article  Google Scholar 

  • 32.

    Treuel, L., Docter, D., Maskos, M. & Stauber, R. H. Protein corona—from molecular adsorption to physiological complexity. Beilstein J. Nanotechnol. 6, 857–873 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Bertoli, F., Garry, D., Monopoli, M. P., Salvati, A. & Dawson, K. A. The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano 10, 10471–10479 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Röcker, C., Pötzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  CAS  Google Scholar 

  • 36.

    Martinez-Moro, M., Di Silvio, D. & Moya, S. E. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona. Biophys. Chem. 253, 106218 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Hargett, A. A. & Renfrow, B. R. Glycosylation of viral surface proteins probed by mass spectrometry. Curr. Opin. Virol. 35, 56–66 (2019).

    Article  CAS  Google Scholar 

  • 38.

    Kundu, S. K. et al. Relaxation dynamics of liposomes in an aqueous solution. Phys. Chem. Chem. Phys. 17, 18449–18455 (2015).

    CAS  Article  Google Scholar 

  • 39.

    Sandin, P., Fitzpatrick, L. W., Simpson, J. C. & Dawson, K. A. High-speed imaging of Rab family small GTPases reveals rare events in nanoparticle trafficking in living cells. ACS Nano 6, 1513–1521 (2012).

    CAS  Article  Google Scholar 

  • 40.

    Boselli, L. et al. Classification and biological identity of complex nano shapes. Commun. Mater. 1, 35 (2020).

  • 41.

    Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    CAS  Article  Google Scholar 

  • 42.

    Kelly, P. M. et al. Mapping protein binding sites on the biomolecular corona of nanoparticles. Nat. Nanotechnol. 10, 472–479 (2015).

    CAS  Article  Google Scholar 

  • 43.

    Herda, L. M. et al. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J. Am. Chem. Soc. 139, 111–114 (2017).

    CAS  Article  Google Scholar 

  • 44.

    Lo Giudice, M. C., Herda, L. M., Polo, E. & Dawson, K. A. In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016).

    CAS  Article  Google Scholar 

  • 45.

    Mohammad-Beigi, H. et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat. Commun. 11, 4535 (2020).

  • 46.

    Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 2006, pe14 (2006).

  • 47.

    Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Bohnert, M. & Schuldiner, M. Stepping outside the comfort zone of membrane contact site research. Nat. Rev. Mol. Cell Biol. 19, 483–484 (2018).

    CAS  Article  Google Scholar 

  • 49.

    Joshi, A. S., Zhang, H. & Prinz, W. A. Organelle biogenesis in the endoplasmic reticulum. Nat. Cell Biol. 19, 876–882 (2017).

    CAS  Article  Google Scholar 

  • 50.

    Shpilka, T. & Haynes, C. M. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19, 109–120 (2018).

    CAS  Article  Google Scholar 

  • 51.

    Fang, E. F. et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17, 308–321 (2016).

    CAS  Article  Google Scholar 

  • 52.

    Fehervari, Z. Building an immune synapse. Nat. Immunol. 13, 816 (2012).

    Google Scholar 

  • 53.

    Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 12, 387–400 (2012).

    CAS  Article  Google Scholar 

  • 54.

    Friedl, P., den Boer, A. T. & Gunzer, M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545 (2005).

    CAS  Article  Google Scholar 

  • 55.

    Wales, D., Saykally, R., Zewail, A. & King, D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, 2003).

  • 56.

    Amit, D. J. Modeling Brain Function: the World of Attractor Neural Networks (Cambridge University Press, 1989).

  • 57.

    Baldassi, C., Pittorino, F. & Zecchina, R. Shaping the learning landscape in neural networks around wide flat minima. Proc. Natl Acad. Sci. USA 117, 161 (2020).

    CAS  Article  Google Scholar 

  • 58.

    Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140 (2018).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-021-00860-0

    spot_img

    Academic VC

    VC Cafe

    Latest Intelligence

    spot_img