Zephyrnet Logo

Controllable van der Waals gaps by water adsorption – Nature Nanotechnology

Date:

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices. J. Semicond. 44, 011901 (2023).

    Article 

    Google Scholar
     

  • Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023).

    Article 

    Google Scholar
     

  • Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Intercalation strategy in 2D materials for electronics and optoelectronics. Small Methods 5, 2100567 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, P. et al. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron. 5, 849–858 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Geim, A. K. Exploring two-dimensional empty space. Nano Lett. 21, 6356–6358 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Q. et al. Capillary condensation under atomic-scale confinement. Nature 588, 250–253 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. NPJ 2D Mater. Appl. 5, 30 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, F. et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Yan, H., Xu, B., Zhen, L. & Xu, C.-Y. Electrochemical intercalation in atomically thin van der Waals materials for structural phase transition and device applications. Adv. Mater. 33, 2000581 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bao, W. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 121, 6293–6320 (2021).

    Article 

    Google Scholar
     

  • Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kanetani, K. et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. Proc. Natl Acad. Sci. USA 109, 19610–19613 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Friend, R. H. & Yoffe, A. D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36, 1–94 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Barragan, S., Muñoz-Santiburcio, D. & Marx, D. Nanoconfined water within graphene slit pores adopts distinct confinement-dependent regimes. J. Phys. Chem. Lett. 10, 329–334 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Muñoz-Santiburcio, D., Wittekindt, C. & Marx, D. Nanoconfinement effects on hydrated excess protons in layered materials. Nat. Commun. 4, 2349 (2013).

    Article 

    Google Scholar
     

  • Muñoz-Santiburcio, D. & Marx, D. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores. Nat. Commun. 7, 12625 (2016).

    Article 

    Google Scholar
     

  • Muñoz-Santiburcio, D. & Marx, D. Nanoconfinement in slit pores enhances water self-dissociation. Phys. Rev. Lett. 119, 056002 (2017).

    Article 

    Google Scholar
     

  • Zang, Y. et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 6, 6269 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).

    Article 

    Google Scholar
     

  • Huang, Y.-C. et al. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 

    Google Scholar
     

  • spot_img

    VC Cafe

    VC Cafe

    Latest Intelligence

    spot_img