Zephyrnet Logo

CD6-targeted antibody-drug conjugate as a new therapeutic agent for T cell lymphoma – Leukemia

Date:

  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  • Vose J, Armitage J, Weisenburger D, International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.

    Article  PubMed  Google Scholar 

  • Ma H, Davarifar A, Amengual JE. The Future of Combination Therapies for Peripheral T Cell Lymphoma (PTCL). Curr Hematologic Malignancy Rep. 2018;13:13–24.

    Article  Google Scholar 

  • Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.

  • Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102:1458–65.

    Article  CAS  PubMed  Google Scholar 

  • Richardson NC, Kasamon YL, Chen H, de Claro RA, Ye J, Blumenthal GM, et al. FDA Approval Summary: Brentuximab Vedotin in First-Line Treatment of Peripheral T-Cell Lymphoma. Oncologist. 2019;24:e180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun M, Kadin ME, Martin PJ, Nettleton J, Hansen JA. A novel human T cell antigen preferentially expressed on mature T cells and shared by both well and poorly differentiated B cell leukemias and lymphomas. J Immunol. 1981;127:987–91.

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Casals M, Font J, Garcia-Carrasco M, Calvo J, Places L, Padilla O, et al. High circulating levels of soluble scavenger receptors (sCD5 and sCD6) in patients with primary Sjogren’s syndrome. Rheumatol (Oxf). 2001;40:1056–9.

    Article  CAS  Google Scholar 

  • Braun M, Muller B, ter Meer D, Raffegerst S, Simm B, Wilde S, et al. The CD6 scavenger receptor is differentially expressed on a CD56 natural killer cell subpopulation and contributes to natural killer-derived cytokine and chemokine secretion. J Innate Immun. 2011;3:420–34.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ruth JH, Rasmussen SM, Athukorala KS, Weber DP, Amin MA, et al. Attenuation of Murine Collagen-Induced Arthritis by Targeting CD6. Arthritis Rheumatol. 2020;72:1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li Y, Qiu W, Bell BA, Dvorina N, Baldwin WM 3rd, et al. Targeting CD6 for the treatment of experimental autoimmune uveitis. J Autoimmun. 2018;90:84–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Singer NG, Whitbred J, Bowen MA, Fox DA, Lin F. CD6 as a potential target for treating multiple sclerosis. Proc Natl Acad Sci USA. 2017;114:2687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogra S, Uprety S, Suresh SH. Itolizumab, a novel anti-CD6 monoclonal antibody: a safe and efficacious biologic agent for management of psoriasis. Expert Opin Biol Ther. 2017;17:395–402.

    Article  CAS  PubMed  Google Scholar 

  • Parthasaradhi A. Safety and Efficacy of Itolizumab in the Treatment of Psoriasis: A Case Series of 20 Patients. J Clin Diagn Res. 2016;10:WD01–3.

    PubMed  PubMed Central  Google Scholar 

  • Dogra S, Shabeer D, Rajagopalan M. Anti-CD6 mAbs for the treatment of psoriasis. Expert Opin Biol Ther. 2020;20:1215–22.

    Article  CAS  PubMed  Google Scholar 

  • Hsi ED, Said J, Macon WR, Rodig SJ, Ondrejka SL, Gascoyne RD, et al. Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am J Surg Pathol. 2014;38:768–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia Santana CA, Tung JW, Gulnik S. Human treg cells are characterized by low/negative CD6 expression. Cytom A. 2014;85:901–8.

    Article  Google Scholar 

  • Townsend EC, Murakami MA, Christodoulou A, Christie AL, Koster J, DeSouza TA, et al. The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell. 2016;30:183.

    Article  CAS  PubMed  Google Scholar 

  • Gill RPK, Gantchev J, Martinez Villarreal A, Ramchatesingh B, Netchiporouk E, Akilov OE, et al. Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma. Cells. 2022;11:593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G. Peripheral T cell lymphomas: from the bench to the clinic. Nat Rev Cancer. 2020;20:323–42.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz S, O’Connor OA, Pro B, Trumper L, Iyer S, Advani R, et al. The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma. Ann Oncol. 2022;33:288–98.

    Article  CAS  PubMed  Google Scholar 

  • Cattoretti G. MYC expression and distribution in normal mature lymphoid cells. J Pathol. 2013;229:430–40.

    Article  CAS  PubMed  Google Scholar 

  • Alzona M, Jack HM, Fisher RI, Ellis TM. CD30 defines a subset of activated human T cells that produce IFN-gamma and IL-5 and exhibit enhanced B cell helper activity. J Immunol. 1994;153:2861–7.

    Article  CAS  PubMed  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img