Zephyrnet Logo

Bacteria-derived nanovesicles enhance tumour vaccination by trained immunity – Nature Nanotechnology

Date:

  • Saxena, M., van der, Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Nanovaccine’s rapid induction of anti-tumor immunity significantly improves malignant cancer immunotherapy. Nano Today 35, 100923 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W., Zhou, Z., Lau, J., Hu, S. & Chen, X. Functional T cell activation by smart nanosystems for effective cancer immunotherapy. Nano Today 27, 28–47 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, D. Y., Huntoon, K., Wang, Y., Jiang, W. & Kim, B. Y. S. Harnessing innate immunity using biomaterials for cancer immunotherapy. Adv. Mater. 33, 2007576 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liang, J. & Zhao, X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol. Med. 18, 352–371 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G., Zhu, M., Zhao, X. & Nie, G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv. Drug. Deliv. Rev. 176, 113889 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cabral, M. G. The phagocytic capacity and immunological potency of human dendritic cells is improved by α2,6-sialic acid deficiency. Immunology 138, 235–245 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, N. et al. Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells. Int. J. Biol. Macromol. 93, 940–951 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Patin, E. Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat. Immunol. 19, 302–314 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dominguez-Andres, J. & Netea, M. G. Long-term reprogramming of the innate immune system. J. Leukoc. Biol. 105, 329–338 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article 

    Google Scholar
     

  • Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018).

  • Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jentho, E. et al. Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme. Proc. Natl Acad. Sci. USA 118, e2102698118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bekkering, S., Dominguez-Andres, J., Joosten, L. A. B., Riksen, N. P. & Netea, M. G. Trained immunity: reprogramming innate immunity in health and disease. Annu. Rev. Immunol. 39, 667–693 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate. Immunol. 6, 152–158 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Novakovic, B. et al. β-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368.e14 (2016).

  • Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Crisan, T. O. et al. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc. Natl Acad. Sci. USA 114, 5485–5490 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Teufel, L. U., Arts, R. J. W., Netea, M. G., Dinarello, C. A. & Joosten, L. A. B. IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 150, 155773 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Moorlag, S. J. C. F. M., Roring, R. J., Joosten, L. A. B. & Netea, M. G. The role of the interleukin-1 family in trained immunity. Immunol. Rev. 281, 28–39 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Swanson, K. V., Deng, M. & Ting, J. PY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Priem, B. et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183, 786–801.e19 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today 35, 101007 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yue, Y. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 6, 898–909 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv. Mater. 34, e2109984 (2022).

    Article 

    Google Scholar
     

  • Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via plug-and-display technology. Nat. Commun. 12, 2041 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liang, J. et al. Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. Fundamental Res. 2, 23–36 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rathinam, V. A. K., Zhao, Y. & Shao, F. Innate immunity to intracellular LPS. Nat. Immunol. 20, 527–533 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vanaja, S. K. et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 165, 1106–1119 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, J. C. et al. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J. Immunother. Cancer 8, e000974 (2020).

    Article 

    Google Scholar
     

  • Kelly, A. & Trowsdale, J. Genetics of antigen processing and presentation. Immunogenetics 71, 161–170 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mangold, C. A. et al. CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J. Gerontol. A. Biol. Sci. Med. Sci. 72, 16–29 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Vasu, C. et al. CD80 and CD86 C domains play an important role in receptor binding and co-stimulatory properties. Int. Immunol. 15, 167–175 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, B. et al. CCR9 and CCL25: a review of their roles in tumor promotion. J. Cell. Physiol. 235, 9121–9132 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, A. et al. ZAP70: a master regulator of adaptive immunity. Semin. Immunopathol. 32, 107–116 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Q. et al. Epigenetic program and transcription factor circuitry of dendritic cell development. Nucleic Acids Res. 43, 9680–9693 (2015).

    CAS 

    Google Scholar
     

  • Karrich, J. J. et al. The transcription factor Spi-B regulates human plasmacytoid dendritic cell survival through direct induction of the antiapoptotic gene BCL2-A1. Blood 119, 5191–5200 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med. 200, 1503–1509 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Kanada, S. et al. Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood 117, 2211–2222 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, S. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article 

    Google Scholar
     

  • Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gillard, J. et al. BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial. NPJ Vaccines 7, 21 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Acevedo, R. et al. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 121 (2014).

    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img