Zephyrnet Logo

A two-player dimension witness based on embezzlement, and an elementary proof of the non-closure of the set of quantum correlations

Date:

Andrea Coladangelo

Computing and Mathematical Sciences, Caltech

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We describe a two-player non-local game, with a fixed small number of questions and answers, such that an $epsilon$-close to optimal strategy requires an entangled state of dimension $2^{Omega(epsilon^{-1/8})}$. Our non-local game is inspired by the three-player non-local game of Ji, Leung and Vidick [17]. It reduces the number of players from three to two, as well as the question and answer set sizes. Moreover, it provides an (arguably) elementary proof of the non-closure of the set of quantum correlations, based on embezzlement and self-testing. In contrast, previous proofs [26,16,19] involved representation theoretic machinery for finitely-presented groups and $C^*$-algebras.

► BibTeX data

► References

[1] Antonio Acín, Serge Massar, and Stefano Pironio. Randomness versus nonlocality and entanglement. Physical Review Letters, 108(10):100402, 2012. https:/​/​doi.org/​10.1103/​PhysRevLett.108.100402.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.108.100402

[2] Jop Briët, Harry Buhrman, and Ben Toner. A generalized grothendieck inequality and nonlocal correlations that require high entanglement. Communications in mathematical physics, 305(3):827–843, 2011. https:/​/​doi.org/​10.1007/​s00220-011-1280-3.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​s00220-011-1280-3

[3] John S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195–200, 1964. https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[4] Nicolas Brunner, Miguel Navascués, and Tamás Vértesi. Dimension witnesses and quantum state discrimination. Physical review letters, 110(15):150501, 2013. https:/​/​doi.org/​10.1103/​PhysRevLett.110.150501.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.110.150501

[5] Cédric Bamps and Stefano Pironio. Sum-of-squares decompositions for a family of clauser-horne-shimony-holt-like inequalities and their application to self-testing. Physical Review A, 91(5):052111, 2015. https:/​/​doi.org/​10.1103/​PhysRevA.91.052111.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.91.052111

[6] Nicolas Brunner, Stefano Pironio, Antonio Acin, Nicolas Gisin, André Allan Méthot, and Valerio Scarani. Testing the dimension of hilbert spaces. Physical review letters, 100(21):210503, 2008. https:/​/​doi.org/​10.1103/​PhysRevLett.100.210503.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.100.210503

[7] Andrea Coladangelo, Koon Tong Goh, and Valerio Scarani. All pure bipartite entangled states can be self-tested. Nature communications, 8:15485, 2017. https:/​/​doi.org/​10.1038/​ncomms15485.
https:/​/​doi.org/​https:/​/​doi.org/​10.1038/​ncomms15485

[8] John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed experiment to test local hidden-variable theories. Physical review letters, 23(15):880, 1969. https:/​/​doi.org/​10.1103/​PhysRevLett.23.880.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevLett.23.880

[9] Matthew Coudron and Anand Natarajan. The parallel-repeated magic square game is rigid. arXiv preprint arXiv:1609.06306, 2016.
arXiv:1609.06306

[10] Andrea Coladangelo. Parallel self-testing of (tilted) epr pairs via copies of (tilted) chsh and the magic square game. Quantum Information & Computation, 17(9-10):831–865, 2017. https:/​/​doi.org/​10.26421/​QIC17.9-10.
https:/​/​doi.org/​https:/​/​doi.org/​10.26421/​QIC17.9-10

[11] Andrea Coladangelo. Generalization of the clauser-horne-shimony-holt inequality self-testing maximally entangled states of any local dimension. Physical Review A, 98(5):052115, 2018. https:/​/​doi.org/​10.1103/​PhysRevA.98.052115.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.98.052115

[12] Rui Chao, Ben W Reichardt, Chris Sutherland, and Thomas Vidick. Test for a large amount of entanglement, using few measurements. Quantum, 2:92, 2018. https:/​/​doi.org/​10.22331/​q-2018-09-03-92.
https:/​/​doi.org/​https:/​/​doi.org/​10.22331/​q-2018-09-03-92

[13] Andrea Coladangelo and Jalex Stark. Robust self-testing for linear constraint system games. arXiv preprint arXiv:1709.09267, 2017.
arXiv:1709.09267

[14] Andrea Coladangelo and Jalex Stark. Separation of finite and infinite-dimensional quantum correlations, with infinite question or answer sets. arXiv preprint arXiv:1708.06522, 2017.
arXiv:1708.06522

[15] Andrea Coladangelo and Jalex Stark. Unconditional separation of finite and infinite-dimensional quantum correlations. arXiv preprint arXiv:1804.05116, 2018.
arXiv:1804.05116

[16] Ken Dykema, Vern I Paulsen, and Jitendra Prakash. Non-closure of the set of quantum correlations via graphs. Communications in Mathematical Physics, pages 1–18, 2017. https:/​/​doi.org/​10.1007/​s00220-019-03301-1.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​s00220-019-03301-1

[17] Zhengfeng Ji, Debbie Leung, and Thomas Vidick. A three-player coherent state embezzlement game. arXiv preprint arXiv:1802.04926, 2018.
arXiv:1802.04926

[18] Debbie Leung, Ben Toner, and John Watrous. Coherent state exchange in multi-prover quantum interactive proof systems. Chicago Journal of Theoretical Computer Science, 11(2013):1, 2013. https:/​/​doi.org/​10.4086/​cjtcs.2013.011.
https:/​/​doi.org/​https:/​/​doi.org/​10.4086/​cjtcs.2013.011

[19] Magdalena Musat and Mikael Rørdam. Non-closure of quantum correlation matrices and factorizable channels that require infinite dimensional ancilla. arXiv preprint arXiv:1806.10242, 2018. https:/​/​doi.org/​10.1007/​s00220-019-03449-w.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​s00220-019-03449-w
arXiv:1806.10242

[20] Laura Mančinska and Thomas Vidick. Unbounded entanglement in nonlocal games. International Colloquium on Automata, Languages, and Programming, pages 835–846, 2014. https:/​/​doi.org/​10.1007/​978-3-662-43948-7_69.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​978-3-662-43948-7_69

[21] Dominic Mayers and Andrew Yao. Self testing quantum apparatus. Quantum Information & Computation, 4(4):273–286, 2004. https:/​/​doi.org/​10.26421/​QIC4.4.
https:/​/​doi.org/​https:/​/​doi.org/​10.26421/​QIC4.4

[22] Matthew McKague, Tzyh Haur Yang, and Valerio Scarani. Robust self-testing of the singlet. Journal of Physics A: Mathematical and Theoretical, 45(45):455304, 2012. https:/​/​doi.org/​10.1088/​1751-8113/​45/​45/​455304.
https:/​/​doi.org/​https:/​/​doi.org/​10.1088/​1751-8113/​45/​45/​455304

[23] Anand Natarajan and Thomas Vidick. A quantum linearity test for robustly verifying entanglement. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1003–1015. ACM, 2017. https:/​/​doi.org/​10.1145/​3055399.3055468.
https:/​/​doi.org/​https:/​/​doi.org/​10.1145/​3055399.3055468

[24] William Slofstra. Lower bounds on the entanglement needed to play xor non-local games. Journal of Mathematical Physics, 52(10):102202, 2011. https:/​/​doi.org/​10.1063/​1.3652924.
https:/​/​doi.org/​https:/​/​doi.org/​10.1063/​1.3652924

[25] William Slofstra. A group with at least subexponential hyperlinear profile. arXiv preprint arXiv:1806.05267, 2018.
arXiv:1806.05267

[26] William Slofstra. The set of quantum correlations is not closed. In Forum of Mathematics, Pi, volume 7. Cambridge University Press, 2019. https:/​/​doi.org/​10.1017/​fmp.2018.3.
https:/​/​doi.org/​https:/​/​doi.org/​10.1017/​fmp.2018.3

[27] William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from non-local games. Journal of the American Mathematical Society, 33(1):1–56, 2020. https:/​/​doi.org/​10.1090/​jams/​929.
https:/​/​doi.org/​https:/​/​doi.org/​10.1090/​jams/​929

[28] William Slofstra and Thomas Vidick. Entanglement in non-local games and the hyperlinear profile of groups. In Annales Henri Poincaré, volume 19, pages 2979–3005. Springer, 2018. https:/​/​doi.org/​10.1007/​s00023-018-0718-y.
https:/​/​doi.org/​https:/​/​doi.org/​10.1007/​s00023-018-0718-y

[29] Volkher B Scholz and Reinhard F Werner. Tsirelson’s problem. arXiv preprint arXiv:0812.4305, 2008.
arXiv:0812.4305

[30] Wim van Dam and Patrick Hayden. Universal entanglement transformations without communication. Physical Review A, 67(6):060302, 2003. https:/​/​doi.org/​10.1103/​PhysRevA.67.060302.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.67.060302

[31] Tzyh Haur Yang and Miguel Navascués. Robust self-testing of unknown quantum systems into any entangled two-qubit states. Physical Review A, 87(5):050102, 2013. https:/​/​doi.org/​10.1103/​PhysRevA.87.050102.
https:/​/​doi.org/​https:/​/​doi.org/​10.1103/​PhysRevA.87.050102

Cited by

[1] Ivan Šupić and Joseph Bowles, “Self-testing of quantum systems: a review”, arXiv:1904.10042.

[2] Zhengfeng Ji, Debbie Leung, and Thomas Vidick, “A three-player coherent state embezzlement game”, arXiv:1802.04926.

[3] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen, “MIP*=RE”, arXiv:2001.04383.

[4] Shubhayan Sarkar, Debashis Saha, Jędrzej Kaniewski, and Remigiusz Augusiak, “Self-testing quantum systems of arbitrary local dimension with minimal number of measurements”, arXiv:1909.12722.

[5] Rui Chao and Ben W. Reichardt, “Quantum dimension test using the uncertainty principle”, arXiv:2002.12432.

[6] Salman Beigi, “Separation of quantum, spatial quantum, and approximate quantum correlations”, arXiv:2004.11103.

The above citations are from SAO/NASA ADS (last updated successfully 2020-06-19 05:53:57). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref’s cited-by service no data on citing works was found (last attempt 2020-06-19 05:53:55).

Source: https://quantum-journal.org/papers/q-2020-06-18-282/

spot_img

Latest Intelligence

spot_img