Zephyrnet Logo

A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion – Nature Nanotechnology

Date:

  • Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63–e63 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piepenburg, O., Williams, C. H., Stemple, D. L. & Armes, N. A. DNA detection using recombination proteins. PLoS Biol. 4, e204 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fozouni, P. et al. Amplification-free detection of SARS-CoV-2 with CRISPR–Cas13a and mobile phone microscopy. Cell 184, 323–333 (2021).

  • Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl Acad. Sci. USA 88, 7276–7280 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marras, S. A., Kramer, F. R. & Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res. 30, e122–e122 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A. DNA–silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 10, 3106–3110 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Neill, P. R., Gwinn, E. G. & Fygenson, D. K. UV excitation of DNA stabilized Ag cluster fluorescence via the DNA bases. J. Phys. Chem. C 115, 24061–24066 (2011).

    Article 

    Google Scholar
     

  • Petty, J. T., Zheng, J., Hud, N. V. & Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh, H.-C. et al. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 134, 11550–11558 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blevins, M. S. et al. Footprints of nanoscale DNA–silver cluster chromophores via activated-electron photodetachment mass spectrometry. ACS Nano 13, 14070–14079 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Copp, S. M. et al. Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors. J. Phys. Chem. Lett. 5, 959–963 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, C., Goodwin, P. M., Yunus, A. I., Dickson, R. M. & Petty, J. T. A split DNA scaffold for a green fluorescent silver cluster. J. Phys. Chem. C 123, 17588–17597 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schultz, D. et al. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 25, 2797–2803 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petty, J. T. et al. Optical sensing by transforming chromophoric silver clusters in DNA nanoreactors. Anal. Chem. 84, 356–364 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. CRISPR/Cas precisely regulated DNA-templated silver nanocluster fluorescence sensor for meat adulteration detection. J. Agric. Food Chem. 70, 14296–14303 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. Y., Park, K. S., Jung, Y. K. & Park, H. G. A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite. Biosens. Bioelectron. 93, 293–297 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo, Y. A. et al. Massively parallel selection of nanocluster beacons. Adv. Mater. 34, e2204957 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y.-A. et al. Nanocluster beacons enable detection of a single N6-methyladenine. J. Am. Chem. Soc. 137, 10476–10479 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obliosca, J. M. et al. A complementary palette of nanocluster beacons. ACS Nano 8, 10150–10160 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerretani, C., Kanazawa, H., Vosch, T. & Kondo, J. Crystal structure of a NIR-emitting DNA-stabilized Ag16 nanocluster. Angew. Chem. Int. Ed. 58, 17153–17157 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Petty, J. T. et al. A DNA-encapsulated silver cluster and the roles of its nucleobase ligands. J. Phys. Chem. C 122, 28382–28392 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Koszinowski, K. & Ballweg, K. A highly charged Ag64+ core in a DNA‐encapsulated silver nanocluster. Chem. Eur. J. 16, 3285–3290 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Rosell, A. et al. Chloride ligands on DNA-stabilized silver nanoclusters. J. Am. Chem. Soc. 145, 10721–10729 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huard, D. J. et al. Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold. J. Am. Chem. Soc. 141, 11465–11470 (2018).

    Article 

    Google Scholar
     

  • Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong, X. et al. Determining membrane protein–lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138, 4346–4349 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCabe, J. W. et al. Variable-temperature electrospray ionization for temperature-dependent folding/refolding reactions of proteins and ligand binding. Anal. Chem. 93, 6924–6931 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramachandran, A. & Santiago, J. G. CRISPR enzyme kinetics for molecular diagnostics. Anal. Chem. 93, 7456–7464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, L. T., Smith, B. M. & Jain, P. K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat. Commun. 11, 4906 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalefski, E. A. et al. Kinetic analysis of Cas12a and Cas13a RNA-guided nucleases for development of improved CRISPR-based diagnostics. iScience 24, 102996 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, H.-C., Sharma, J., Han, J. J., Martinez, J. S. & Werner, J. H. A beacon of light. IEEE Nanotechnol. Mag. 5, 28–33 (2011).

    Article 

    Google Scholar
     

  • Juul, S. et al. Nanocluster beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale 7, 8332–8337 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, L., Sun, X., Hong, Q. & Li, F. Ratiometric nanocluster beacon: a label-free and sensitive fluorescent DNA detection platform. ACS Appl. Mater. Interfaces 9, 13102–13110 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suo, T. et al. A versatile turn-on fluorometric biosensing profile based on split aptamers-involved assembly of nanocluster beacon sandwich. Sens. Actuators B 324, 128586 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gwinn, E., Schultz, D., Copp, S. M. & Swasey, S. DNA-protected silver clusters for nanophotonics. Nanomaterials 5, 180–207 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, X., Kang, X. & Zhu, M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem. Soc. Rev. 52, 5892–5967 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leytus, S. P., Melhado, L. L. & Mangel, W. F. Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broto, M. et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. Nat. Nanotechnol. 17, 1120–1126 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q. et al. DNAzyme-based faithful probing and pulldown to identify candidate biomarkers of low abundance. Nat. Chem. 16, 122–131 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fort, K. L. et al. Implementation of ultraviolet photodissociation on a benchtop Q exactive mass spectrometer and its application to phosphoproteomics. Anal. Chem. 88, 2303–2310 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, J. D. et al. Enhanced ion mobility separation and characterization of isomeric phosphatidylcholines using absorption mode Fourier transform multiplexing and ultraviolet photodissociation mass spectrometry. Anal. Chem. 94, 4252–4259 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img