Zephyrnet Logo

Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot

Date:

  • 1.

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Article  Google Scholar 

  • 2.

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    CAS  Article  Google Scholar 

  • 3.

    Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    CAS  Article  Google Scholar 

  • 4.

    Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Article  Google Scholar 

  • 6.

    Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Meinardi, F., Bruni, F. & Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2, 17072 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Wu, K., Li, H. & Klimov, V. I. Tandem luminescent solar concentrators based on engineered quantum dots. Nat. Photon. 12, 105–110 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    CAS  Article  Google Scholar 

  • 10.

    Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    CAS  Article  Google Scholar 

  • 11.

    Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    CAS  Article  Google Scholar 

  • 12.

    Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    CAS  Article  Google Scholar 

  • 13.

    Pietryga, J. M. et al. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J. Am. Chem. Soc. 130, 4879–4885 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Moreels, I. et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study. ACS Nano 5, 2004–2012 (2011).

    CAS  Article  Google Scholar 

  • 15.

    Bischof, T. S., Correa, R. E., Rosenberg, D., Dauler, E. A. & Bawendi, M. G. Measurement of emission lifetime dynamics and biexciton emission quantum yield of individual InAs colloidal nanocrystals. Nano Lett. 14, 6787–6791 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Srivastava, V., Dunietz, E., Kamysbayev, V., Anderson, J. S. & Talapin, D. V. Monodisperse InAs quantum dots from aminoarsine precursors: understanding the role of reducing agent. Chem. Mater. 30, 3623–3627 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Sarkar, S. et al. Short-wave infrared quantum dots with compact sizes as molecular probes for fluorescence microscopy. J. Am. Chem. Soc. 142, 3449–3462 (2020).

    CAS  Article  Google Scholar 

  • 18.

    Abdelazim, N. M. et al. Room temperature synthesis of HgTe quantum dots in an aprotic solvent realizing high photoluminescence quantum yields in the infrared. Chem. Mater. 29, 7859–7867 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Izquierdo, E. et al. Strongly confined HgTe 2D nanoplatelets as narrow near-infrared emitters. J. Am. Chem. Soc. 138, 10496–10501 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Smith, A. M. & Nie, S. Bright and compact alloyed quantum dots with broadly tunable near-infrared absorption and fluorescence spectra through mercury cation exchange. J. Am. Chem. Soc. 133, 24–26 (2011).

    CAS  Article  Google Scholar 

  • 21.

    Bertram, S. N. et al. Single nanocrystal spectroscopy of shortwave infrared emitters. ACS Nano 13, 1042–1049 (2019).

    CAS  Google Scholar 

  • 22.

    Hu, Z. et al. Intrinsic exciton photophysics of PbS quantum dots revealed by low-temperature single nanocrystal spectroscopy. Nano Lett. 19, 8519–8525 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Chen, Y. et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008).

    CAS  Article  Google Scholar 

  • 24.

    Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 139, 16556–16567 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    CAS  Article  Google Scholar 

  • 26.

    Chen, O. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    CAS  Article  Google Scholar 

  • 27.

    Jeong, K. S., Deng, Z., Keuleyan, S., Liu, H. & Guyot-Sionnest, P. Air-stable n-doped colloidal HgS quantum dots. J. Phys. Chem. Lett. 5, 1139–1143 (2014).

    CAS  Article  Google Scholar 

  • 28.

    Shen, G. & Guyot-Sionnest, P. HgS and HgS/CdS colloidal quantum dots with infrared intraband transitions and emergence of a surface plasmon. J. Phys. Chem. C 120, 11744–11753 (2016).

    CAS  Article  Google Scholar 

  • 29.

    Eychmüller, A., Mews, A. & Weller, H. A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208, 59–62 (1993).

    Article  Google Scholar 

  • 30.

    Schooss, D., Mews, A., Eychmuller, A. & Weller, H. Quantum-dot quantum well CdS/HgS/CdS: theory and experiment. Phys. Rev. B 49, 17072–17078 (1994).

    CAS  Article  Google Scholar 

  • 31.

    Li, J. J. et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003).

    CAS  Article  Google Scholar 

  • 32.

    Ithurria, S. & Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134, 18585–18590 (2012).

    CAS  Article  Google Scholar 

  • 33.

    De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  CAS  Google Scholar 

  • 34.

    Potter, R. W. & Barnes, H. L. Phase relations in the binary Hg–S. Am. Mineral. 63, 1143–1152 (1978).

    CAS  Google Scholar 

  • 35.

    Mews, A., Eychmueller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934–941 (1994).

    CAS  Article  Google Scholar 

  • 36.

    Izquierdo, E. et al. Coupled HgSe colloidal quantum wells through a tunable barrier: a strategy to uncouple optical and transport band gap. Chem. Mater. 30, 4065–4072 (2018).

    CAS  Article  Google Scholar 

  • 37.

    Hazarika, A. et al. Colloidal atomic layer deposition with stationary reactant phases enables precise synthesis of “digital” II–VI nano-heterostructures with exquisite control of confinement and strain. J. Am. Chem. Soc. 141, 13487–13496 (2019).

    CAS  Article  Google Scholar 

  • 38.

    Lin, Q. et al. Design and synthesis of heterostructured quantum dots with dual emission in the visible and infrared. ACS Nano 9, 539–547 (2015).

    CAS  Article  Google Scholar 

  • 39.

    Sayevich, V. et al. Chloride and indium-chloride-complex inorganic ligands for efficient stabilization of nanocrystals in solution and doping of nanocrystal solids. Adv. Funct. Mater. 26, 2163–2175 (2016).

    CAS  Article  Google Scholar 

  • 40.

    Pinchetti, V. et al. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 10, 6877–6887 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).

    Article  CAS  Google Scholar 

  • 42.

    Jeong, B. G. et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297–9305 (2016).

    CAS  Article  Google Scholar 

  • 43.

    Piryatinski, A., Ivanov, S. A., Tretiak, S. & Klimov, V. I. Effect of quantum and dielectric confinement on the exciton–exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7, 108–115 (2007).

    CAS  Article  Google Scholar 

  • 44.

    Hanson, C. J. et al. Giant PbSe/CdSe/CdSe quantum dots: crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals. J. Am. Chem. Soc. 139, 11081–11088 (2017).

    CAS  Article  Google Scholar 

  • 45.

    Chen, J.-S., Zang, H., Li, M. & Cotlet, M. Hot excitons are responsible for increasing photoluminescence blinking activity in single lead sulfide/cadmium sulfide nanocrystals. Chem. Commun. 54, 495–498 (2018).

    CAS  Article  Google Scholar 

  • 46.

    Zang, H., Routh, P. K., Meng, Q. & Cotlet, M. Electron transfer dynamics from single near infrared emitting lead sulfide–cadmium sulfide nanocrystals to titanium dioxide. Nanoscale 9, 14664–14671 (2017).

    CAS  Article  Google Scholar 

  • 47.

    Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    CAS  Article  Google Scholar 

  • 48.

    Park, Y.-S., Bae, W. K., Padilha, L. A., Pietryga, J. M. & Klimov, V. I. Effect of the core/shell interface on Auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14, 396–402 (2014).

    CAS  Article  Google Scholar 

  • 49.

    Kozlov, O. V. et al. Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity. Science 365, 672–675 (2019).

    CAS  Article  Google Scholar 

  • 50.

    Lim, J., Park, Y. S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    CAS  Article  Google Scholar 

  • 51.

    Park, Y. S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    CAS  Article  Google Scholar 

  • 52.

    Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    CAS  Article  Google Scholar 

  • 53.

    Pandey, A. K. & Nunzi, J. M. Rubrene/fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage. Adv. Mater. 19, 3613–3617 (2007).

    CAS  Article  Google Scholar 

  • 54.

    Xiang, C., Peng, C., Chen, Y. & So, F. Origin of sub-bandgap electroluminescence in organic light-emitting diodes. Small 11, 5439–5443 (2015).

    CAS  Article  Google Scholar 

  • 55.

    Luo, H. et al. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 13, 8229–8236 (2019).

    CAS  Article  Google Scholar 

  • 56.

    Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    CAS  Article  Google Scholar 

  • 57.

    Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    CAS  Article  Google Scholar 

  • 58.

    Lim, J., Park, Y.-S., Wu, K., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    CAS  Article  Google Scholar 

  • 59.

    Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    CAS  Article  Google Scholar 

  • 60.

    Chen, O. et al. Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem. Int. Ed. 47, 8638–8641 (2008).

    CAS  Article  Google Scholar 

  • 61.

    Nag, A. et al. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, HTe, TeS32−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 133, 10612–10620 (2011).

    CAS  Article  Google Scholar 

  • 62.

    Sayevich, V. et al. Hybrid n-butylamine-based ligands for switching the colloidal solubility and regimentation of inorganic-capped nanocrystals. ACS Nano 11, 1559–1571 (2017).

    CAS  Article  Google Scholar 

  • 63.

    Jasieniak, J., Smith, L., van Embden, J., Mulvaney, P. & Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

    CAS  Article  Google Scholar 

  • 64.

    Slejko, E. A. et al. Precise engineering of nanocrystal shells via colloidal atomic layer deposition. Chem. Mater. 29, 8111–8118 (2017).

    CAS  Article  Google Scholar 

  • 65.

    Boldt, K., Kirkwood, N., Beane, G. A. & Mulvaney, P. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1–xS nanoparticles by in situ alloying. Chem. Mater. 25, 4731–4738 (2013).

    CAS  Article  Google Scholar 

  • 66.

    Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019).

    CAS  Article  Google Scholar 

  • 67.

    Kim, J.-H. et al. Performance improvement of quantum dot-light-emitting diodes enabled by an alloyed ZnMgO nanoparticle electron transport layer. Chem. Mater. 27, 197–204 (2015).

    CAS  Article  Google Scholar 

  • 68.

    Cirloganu, C. M. et al. Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nat. Commun. 5, 4148 (2014).

    CAS  Article  Google Scholar 

  • 69.

    Comas, F. & Studart, N. Electron–phonon interaction in quantum-dot/quantum-well semiconductor heterostructures. Phys. Rev. B 69, 235321 (2004).

    Article  CAS  Google Scholar 

  • 70.

    Royo, M., Planelles, J. & Pi, M. Effective mass and dielectric constant mismatch effects in spherical multishell quantum dots. Phys. Rev. B 75, 033302 (2007).

    Article  CAS  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00871-x

    spot_img

    Latest Intelligence

    spot_img