Connect with us

Aerospace

Watch live: Russia’s Pirs module set to depart space station today

Published

on



Wrapping up nearly 20 years of service as a docking port and airlock, Russia’s Pirs module is set to depart the International Space Station Monday under tow from a Progress supply ship, heading for a destructive re-entry in Earth’s atmosphere to clear the way for arrival of a larger science lab later this week.

Russia’s Progress MS-16 cargo freighter will undock from the space station at 6:56 a.m. EDT (1056 GMT) Monday. Instead of departing the station alone, the Progress spacecraft will back away from the complex with Russia’s Pirs docking compartment, clearing a port on the Zvezda service module that has been occupied since 2001.

The Pirs module launched to the space station Sept. 14, 2001, aboard a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. A modified Progress cargo spacecraft delivered the Pirs module to the station, culminating in a docking with the Earth-facing port on the Zvezda service module two days after launch.

Since then, the Pirs module has supported dozens of Russian spacewalks and served as a docking port for Russian Soyuz and Progress ferry ships carrying crew and cargo to the space station. The Russian Poisk module, launched in 2009 and similar in design to Pirs, remains at the space station on the opposite side of the Zvezda module to serve as an airlock for future Russian spacewalks.

The Progress MS-16 cargo freighter became the final visiting vehicle to dock with Pirs in February. On June 2, cosmonauts Oleg Novitskiy and Pyotr Dubrov ventured outside the space station to prep the Pirs module for disposal. Their tasks included repositioning an extendable tethered to Pirs, and unplugging rendezvous antenna cables from the module.

Pirs measures about 16 feet (4.9 meters) long and 8.4 feet (2.55 meters) in diameter at its widest point, according to NASA.

With those preparations complete, Russian officials awaited launch of the module that will take the place of Pirs at Zvezda’s Earth-facing docking port.

The Nauka science lab, a long-delayed expansion of the space station’s Russian segment, launched last Wednesday from Baikonur aboard a Proton rocket. After working through post-launch problems with the new spacecraft’s propulsion system and Kurs automated rendezvous radar, Russian mission controllers finally completed the first orbital maneuvers with Nauka’s main engines over the weekend and verified the Kurs system was functional for the science lab’s docking with the space station.

While ground teams worked through those issues, Russian managers delayed the departure of the Pirs module from Friday until Monday to get a clearer picture of the status of the new Nauka spacecraft.

Satisfied the the Nauka module is on track to arrive at the space station Thursday, mission control in Moscow gave the go-ahead to depressurize the docking system connecting Pirs with Zvezda in preparation for the departure Monday.

File photo of Russia’s Pirs module attached to the International Space Station. Credit: Roscosmos

After undocking, the Progress MS-16 spacecraft will fire thrusters to carry the Pirs module a safe distance from the space station, then perform a deorbit burn at 10:01 a.m. EDT (1401 GMT) Monday. That will set the stage for the Progress spacecraft, loaded with trash from the space station, to drive the Pirs module into the Earth’s atmosphere for a destructive re-entry less than an hour later.

Russia’s space agency, Roscosmos, said any debris that survives re-entry is expected to fall into a remote stretch of the South Pacific Ocean around 10:51 a.m. EDT (1451 GMT).

With Pirs out of the way, ground teams plan to inspect the Earth-facing docking port on the Zvezda module using cameras on the the space station’s Canadian-built robotic arm. The inspection will ensure there’s no debris or obstructions on the docking mechanism, which was last used for a docking when Pirs linked up with the station in 2001.

If teams find any problems, cosmonauts Oleg Novitskiy and Pyotr Dubrov could head outside the space station on a spacewalk later this week to clean up the docking system.

The Nauka module is set to link up with the space station Thursday at 9:25 a.m. EDT (1325 GMT).

After docking of the Nauka module, Russian cosmonauts plan a series of up to 11 spacewalks later this year and early next year to outfit the exterior new lab element.

Once fully operational, Nauka will accommodate dockings of Progress resupply ships, Soyuz crew capsules, and Russia’s new Prichal node module later this year.

Inside Nauka, Russian cosmonauts will install and activate scientific experiments, prepare a new oxygen generation system for operation, set up a new toilet, and ready a new sleeping compartment for an extra Russian crew member on the space station.

The Nauka module, also called the Multipurpose Laboratory Module, carries the European Robotic Arm, which was completed 15 years ago to await an opportunity to fly to the space station.

At 20.2 metric tons (44,500 pounds), the Nauka module is more than five times the mass of the Pirs docking compartment. Nauka extends about 43 feet (13 meters) long, which will make it one of the largest modules at the International Space Station.

The bus-sized Nauka research module has been in development for more than 20 years, originally as a backup for Russia’s Zarya module, the first element of the space station to launch in 1998. Russia said in 2004 that the backup to Zarya would be converted into a lab module for launch in 2007.

But delays have kept the Russian lab on the ground for years. Engineers at Energia, the prime contractor for Russia’s human spaceflight program, found flaws in the module’s propulsion system in 2013. The module was returned to Khrunichev, its manufacturer, for lengthy repairs that delayed Nauka’s launch several more years.

Nauka is the first pressurized module to be added to the space station since the arrival of the small Bigelow Expandable Activity Module in 2016. The last Russian pressurized element of any size launched to the space station was the Rassvet docking module, which was delivered by a NASA space shuttle in 2010.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/26/pirs-undocking-and-disposal/

Aerospace

Blue Origin, Rocket Lab, SpaceX, ULA win Space Force contracts for rocket technology projects

Published

on

The awards made by the Space Enterprise Consortium are for prototypes that will be jointly funded by the government and the contractors

WASHINGTON — Blue Origin, Rocket Lab, SpaceX and United Launch Alliance were selected to participate in technology development projects to advance rocket engine testing and launch vehicle upper stages, the U.S. Space Force Space Systems Command announced Sept. 24.

The awards made by the Space Enterprise Consortium are for prototypes that will be jointly funded by the government and the contractors under partnerships known as OTAs, or other transaction authority.  The contracts were split between current national security launch providers SpaceX and ULA, and new entrants Blue Origin and Rocket Lab that might compete in 2024 for the next round of national security launch service contracts. 

  • Blue Origin will receive $24.3 million for cryogenic fluid management for its New Glenn rocket’s second stage.
  • Rocket Lab gets $24.3 million for upper stage development of its future launch vehicle Neutron. 
  • SpaceX gets $14.4 million for testing technologies for its next-generation Raptor engine: rapid throttling and restart testing; liquid methane specification development and testing; and combustion stability analysis and testing.
  • ULA gets $24.3 million for uplink command and control for Centaur 5, the upper stage of the company’s new rocket Vulcan Centaur.

The SpEC consortium solicited proposals for these projects on May 11. 

“We are excited to partner with industry to advance transformational space access capabilities,” said Col. Rob Bongiovi, director of Space Systems Command’s Launch Enterprise.

The Raptor testing contract awarded to SpaceX was funded by a $15 million appropriation that Congress added to the 2021 defense budget for next-generation engine testing. “This prototype effort will advance state-of-the-art in rocket engines, including new technologies to enable space access and mobility,” the SpEC consortium said. 

The other three projects for upper stage technology are funded in fiscal year 2022. The Space Systems Command said the contracts will be awarded early next year pending congressional approval of the 2022 budget request.

These are “orbital transfer prototype projects to improve space access capability for national security launch systems,” the SpEC said. “Anticipated benefits include reducing costs by allowing procurement of lower energy launch vehicle configurations, and improving mass-to-orbit capability” specially for trajectories beyond geosynchronous orbit.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/blue-origin-rocket-lab-spacex-ula-win-space-force-contracts-for-rocket-technology-projects/

Continue Reading

Aerospace

Op-ed | Can we backhaul our way to space?

Published

on

If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve

Trade. It enables, disseminates, and helps pay for new technologies and skills. It encourages sciences, the arts, and communications across oceans and cultures. It is a requirement for the evolution and supply of settlements and cities. Like technology and physical expansion, trade is a defining characteristic of humanity. It is impossible to overstate its importance in human history and development.

So, how do we get trade, and all of its ancillary benefits, started on the new frontier of space? After finding things to trade – like lunar or Martian scientific knowledge or lunar water – trade is most likely encouraged by making both the upfront and ongoing costs of space transportation and operations as low as possible. That requires the most efficient possible use of whatever transportation is available. One way to increase efficiency is to employ a concept the trucking industry calls‚“backhaul.”

The administration of Donald Trump challenged NASA to aggressively return astronauts to Earth’s moon, and to prepare for going on to Mars. President Joe Biden’s administration appears to support continuation of that vision. A young administration confronted with a Congress precisely balanced between bitterly fighting political parties is unlikely to want to spend its limited political capital squabbling over space policy. That encourages continuity.

There also seems to be a new sense of reality at NASA. While senators appear to have headed off any attempt to cancel NASA’s vastly late and over-budget Saturn 5-class Space Launch System and freeing the resources it consumes for more useful purposes, NASA is doing what it can to minimize the SLS’s lost opportunity costs. Payloads that Congress baselined for the SLS have been moved to cheaper commercial rockets. NASA picked SpaceX’s largely self-funded, Starship-based lander for the Human Landing System. Boeing has been strongly urged to improve their dismal performance managing SLS — though there is little sign of that actually happening. Nonetheless, it is becoming possible to believe that a “lunar gateway” station, and maybe even early visits to the lunar surface, could actually occur – if not by 2024, at least within the decade of the 2020s.

In an early, lunar transportation architecture dependent on the expendable SLS, the astronaut capsule alone will return to Earth — usually with a small amount of spare volume and mass. Later when reusable spacecraft ply between Earth and her moon, and supplies are transported in one direction, empty or partially filled vehicles will return to be used again. Since the empty vehicles produce no value beyond returning for reuse, anything that allows space on them to be used or sold is a net gain for the transportation provider. In the trucking industry, goods “backhauled” in this way often pay extraordinarily low rates, subsidized by the primary purpose of moving the outbound goods. Crucially, the outbound cargo can be totally unrelated to the inbound backhaul.

Early first-generation vehicles will be severely constrained in both volume and mass, but even then backhaul may be relevant. Returning crew capsules could carry small items stored “under the seats.” These might include lunar samples desired by companies or scientists, or even wealthy individuals, in addition to those wanted by NASA. Low-mass ornaments or jewelry, like glass beads from ancient lunar volcanic “fire fountains” and other collectible mineral grains, whose value comes solely from their being obtained on Earth’s moon, are possible high-value items. Possible rare, high-value heavy elements or rare-earth elements collected from asteroid impact sites could be used in orbit or on Earth.

Tiny but abrasive and chemically reactive lunar dust particles can damage equipment and human lungs, so all samples need to be properly stored in sealed containers. After arrival on Earth, they must be cleaned before distribution to nonscientists.

Later, if second-generation lunar crew transportation vehicles were reusable, backhaul opportunities become much more attractive. After dropping crew and supplies off at a lunar base, cislunar supply vehicles would return empty, or with smaller return cargoes, to low Earth orbit or elsewhere in cislunar space. At that time, backhaul might become a real market.

The International Space Station and future semi-commercial stations, Lunar Gateway, applications satellites, and other activities in cislunar space need water and oxygen for propulsion, drinking, and breathing – both of which are readily available on Earth’s moon without having to lift them from Earth’s surface. Oxygen can be derived from oxidized surface rocks available in many locations, not only from polar water deposits. Water, because it is useful or necessary for so many things in so many places, has been called the “oil” of the solar system.

If NASA were to establish a science base on Earth’s moon, lunar water or oxygen might be backhauled for use at the cislunar facilities. If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve – which might never happen if the infrastructure for supplying space facilities with lunar water had to be paid for up front and from scratch, before any water was delivered.

Backhaul allows trade to start small, possibly very small, early on while transportation infrastructure is still rudimentary. That could increase early income from lunar activities, amortizing some of the costs and encouraging growth, leading to earlier development of largescale commercial or semi-commercial industrial stations or orbital tourist facilities. Costs could be spread over multiple activities, in this case both science and commerce.

Similar ideas for incremental development are not new. Companies developing a new technology often take an incremental approach, earning money on partial solutions while developing their better mouse traps. SpaceX was able to parlay testing retro-propulsion deceleration technologies needed for their Falcon 9 reusable first stage —using rocket engine plumes to protect the vehicle during reentry — by trading test data useful for potential Mars missions with NASA.

The space agency flew aircraft with advanced thermal imaging sensors to observe reentering test vehicles paid for by SpaceX, and shared the results. NASA got data it could not otherwise afford while SpaceX got the data they needed to perfect firststage reentry without having to fly their own sensors.

Later, SpaceX went a step further. The company tested reusing Falcon 9 first stages while launching operational satellites for paying customers. The test could take place after the first stage had completed its operational mission of delivering the second stage and payload to the needed trajectory. The customer paid for the launch — presumably at a somewhat reduced price to accept the risk of flying with experimental hardware on board — while SpaceX got their test data without having to pay for a dedicated test launch.

The advent of a new partially commercialized lunar strategy is exciting, but it remains true that no lunar base is likely in the immediate future. That means no returning vehicles with excess capacity to sell cheap.

So, let’s look closer to home. There are already operational flights that could offer backhaul opportunities. Right now, there are three vehicles delivering crew or cargo to the ISS and returning to Earth: the Russian Soyuz, the SpaceX Crew Dragon, and the SpaceX Cargo Dragon. Soon the Boeing CST-100 Starliner and Sierra Nevada’s Dream Chaser will join the mix. Returning Soyuz and other returning crew vehicles have little excess capacity. Dragon Cargo is another story.

Dragon Cargo can return 3,000 kg in 10 cubic meters from the ISS. Because of various constraints like available volume and operational needs, Dragons usually do not return with their full theoretical capacity in cargo. On most return missions, small amounts of space could probably be found for backhaul. Soon, Dream Chaser will also return with substantial cargo capacity.

So, what might we backhaul from the International Space Station?

A company called Made In Space is deploying a series of ever-improving 3D printers to the station. Currently, these are used experimentally to make tools and parts needed on the station.

It is not hard to imagine using excess capacity or a second machine to print small novelty items for export to Earth on returning crew or cargo capsules. Such items might be quite valuable to those interested in space exploration, or in owning something truly unique. If backhaul costs were low enough, and especially if the prospective objects incorporated some property that could only be made in space, the market could be significant. If one entrepreneur makes a profit, others will follow, each with their own take. Some might even invent something useful that cannot be made on Earth.

While NASA has traditionally been resistant to using publicly owned infrastructure for profit-making businesses seen as frivolous, attitudes are changing. The Russians have fewer qualms, and one module already is privately owned and rented by NASA. Further private modules are planned for the very near future. If someone wanted to start a small business that used backhaul to get its products to Earth, they could probably find a way to do it, especially if production could be automated and not use valuable astronaut time.

If a few small businesses succeed, they could grow. At some point, volume might grow high enough for a consortium to purchase full-priced transportation to Earth. At that point, a mature industry will have arrived, and a trading economy will be firmly established.

Trade will have achieved yet another breakthrough for humanity — helping to pay for our expansion into the final frontier.


Donald F. Robertson is a freelance space industry journalist based in San Francisco. Follow him at @DonaldFR.

This article originally appeared in the September 2021 issue of SpaceNews magazine.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/op-ed-can-we-backhaul-our-way-to-space/

Continue Reading

Aerospace

Op-ed | Can we backhaul our way to space?

Published

on

If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve

Trade. It enables, disseminates, and helps pay for new technologies and skills. It encourages sciences, the arts, and communications across oceans and cultures. It is a requirement for the evolution and supply of settlements and cities. Like technology and physical expansion, trade is a defining characteristic of humanity. It is impossible to overstate its importance in human history and development.

So, how do we get trade, and all of its ancillary benefits, started on the new frontier of space? After finding things to trade – like lunar or Martian scientific knowledge or lunar water – trade is most likely encouraged by making both the upfront and ongoing costs of space transportation and operations as low as possible. That requires the most efficient possible use of whatever transportation is available. One way to increase efficiency is to employ a concept the trucking industry calls‚“backhaul.”

The administration of Donald Trump challenged NASA to aggressively return astronauts to Earth’s moon, and to prepare for going on to Mars. President Joe Biden’s administration appears to support continuation of that vision. A young administration confronted with a Congress precisely balanced between bitterly fighting political parties is unlikely to want to spend its limited political capital squabbling over space policy. That encourages continuity.

There also seems to be a new sense of reality at NASA. While senators appear to have headed off any attempt to cancel NASA’s vastly late and over-budget Saturn 5-class Space Launch System and freeing the resources it consumes for more useful purposes, NASA is doing what it can to minimize the SLS’s lost opportunity costs. Payloads that Congress baselined for the SLS have been moved to cheaper commercial rockets. NASA picked SpaceX’s largely self-funded, Starship-based lander for the Human Landing System. Boeing has been strongly urged to improve their dismal performance managing SLS — though there is little sign of that actually happening. Nonetheless, it is becoming possible to believe that a “lunar gateway” station, and maybe even early visits to the lunar surface, could actually occur – if not by 2024, at least within the decade of the 2020s.

In an early, lunar transportation architecture dependent on the expendable SLS, the astronaut capsule alone will return to Earth — usually with a small amount of spare volume and mass. Later when reusable spacecraft ply between Earth and her moon, and supplies are transported in one direction, empty or partially filled vehicles will return to be used again. Since the empty vehicles produce no value beyond returning for reuse, anything that allows space on them to be used or sold is a net gain for the transportation provider. In the trucking industry, goods “backhauled” in this way often pay extraordinarily low rates, subsidized by the primary purpose of moving the outbound goods. Crucially, the outbound cargo can be totally unrelated to the inbound backhaul.

Early first-generation vehicles will be severely constrained in both volume and mass, but even then backhaul may be relevant. Returning crew capsules could carry small items stored “under the seats.” These might include lunar samples desired by companies or scientists, or even wealthy individuals, in addition to those wanted by NASA. Low-mass ornaments or jewelry, like glass beads from ancient lunar volcanic “fire fountains” and other collectible mineral grains, whose value comes solely from their being obtained on Earth’s moon, are possible high-value items. Possible rare, high-value heavy elements or rare-earth elements collected from asteroid impact sites could be used in orbit or on Earth.

Tiny but abrasive and chemically reactive lunar dust particles can damage equipment and human lungs, so all samples need to be properly stored in sealed containers. After arrival on Earth, they must be cleaned before distribution to nonscientists.

Later, if second-generation lunar crew transportation vehicles were reusable, backhaul opportunities become much more attractive. After dropping crew and supplies off at a lunar base, cislunar supply vehicles would return empty, or with smaller return cargoes, to low Earth orbit or elsewhere in cislunar space. At that time, backhaul might become a real market.

The International Space Station and future semi-commercial stations, Lunar Gateway, applications satellites, and other activities in cislunar space need water and oxygen for propulsion, drinking, and breathing – both of which are readily available on Earth’s moon without having to lift them from Earth’s surface. Oxygen can be derived from oxidized surface rocks available in many locations, not only from polar water deposits. Water, because it is useful or necessary for so many things in so many places, has been called the “oil” of the solar system.

If NASA were to establish a science base on Earth’s moon, lunar water or oxygen might be backhauled for use at the cislunar facilities. If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve – which might never happen if the infrastructure for supplying space facilities with lunar water had to be paid for up front and from scratch, before any water was delivered.

Backhaul allows trade to start small, possibly very small, early on while transportation infrastructure is still rudimentary. That could increase early income from lunar activities, amortizing some of the costs and encouraging growth, leading to earlier development of largescale commercial or semi-commercial industrial stations or orbital tourist facilities. Costs could be spread over multiple activities, in this case both science and commerce.

Similar ideas for incremental development are not new. Companies developing a new technology often take an incremental approach, earning money on partial solutions while developing their better mouse traps. SpaceX was able to parlay testing retro-propulsion deceleration technologies needed for their Falcon 9 reusable first stage —using rocket engine plumes to protect the vehicle during reentry — by trading test data useful for potential Mars missions with NASA.

The space agency flew aircraft with advanced thermal imaging sensors to observe reentering test vehicles paid for by SpaceX, and shared the results. NASA got data it could not otherwise afford while SpaceX got the data they needed to perfect firststage reentry without having to fly their own sensors.

Later, SpaceX went a step further. The company tested reusing Falcon 9 first stages while launching operational satellites for paying customers. The test could take place after the first stage had completed its operational mission of delivering the second stage and payload to the needed trajectory. The customer paid for the launch — presumably at a somewhat reduced price to accept the risk of flying with experimental hardware on board — while SpaceX got their test data without having to pay for a dedicated test launch.

The advent of a new partially commercialized lunar strategy is exciting, but it remains true that no lunar base is likely in the immediate future. That means no returning vehicles with excess capacity to sell cheap.

So, let’s look closer to home. There are already operational flights that could offer backhaul opportunities. Right now, there are three vehicles delivering crew or cargo to the ISS and returning to Earth: the Russian Soyuz, the SpaceX Crew Dragon, and the SpaceX Cargo Dragon. Soon the Boeing CST-100 Starliner and Sierra Nevada’s Dream Chaser will join the mix. Returning Soyuz and other returning crew vehicles have little excess capacity. Dragon Cargo is another story.

Dragon Cargo can return 3,000 kg in 10 cubic meters from the ISS. Because of various constraints like available volume and operational needs, Dragons usually do not return with their full theoretical capacity in cargo. On most return missions, small amounts of space could probably be found for backhaul. Soon, Dream Chaser will also return with substantial cargo capacity.

So, what might we backhaul from the International Space Station?

A company called Made In Space is deploying a series of ever-improving 3D printers to the station. Currently, these are used experimentally to make tools and parts needed on the station.

It is not hard to imagine using excess capacity or a second machine to print small novelty items for export to Earth on returning crew or cargo capsules. Such items might be quite valuable to those interested in space exploration, or in owning something truly unique. If backhaul costs were low enough, and especially if the prospective objects incorporated some property that could only be made in space, the market could be significant. If one entrepreneur makes a profit, others will follow, each with their own take. Some might even invent something useful that cannot be made on Earth.

While NASA has traditionally been resistant to using publicly owned infrastructure for profit-making businesses seen as frivolous, attitudes are changing. The Russians have fewer qualms, and one module already is privately owned and rented by NASA. Further private modules are planned for the very near future. If someone wanted to start a small business that used backhaul to get its products to Earth, they could probably find a way to do it, especially if production could be automated and not use valuable astronaut time.

If a few small businesses succeed, they could grow. At some point, volume might grow high enough for a consortium to purchase full-priced transportation to Earth. At that point, a mature industry will have arrived, and a trading economy will be firmly established.

Trade will have achieved yet another breakthrough for humanity — helping to pay for our expansion into the final frontier.


Donald F. Robertson is a freelance space industry journalist based in San Francisco. Follow him at @DonaldFR.

This article originally appeared in the September 2021 issue of SpaceNews magazine.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/op-ed-can-we-backhaul-our-way-to-space/

Continue Reading

Aerospace

Op-ed | Can we backhaul our way to space?

Published

on

If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve

Trade. It enables, disseminates, and helps pay for new technologies and skills. It encourages sciences, the arts, and communications across oceans and cultures. It is a requirement for the evolution and supply of settlements and cities. Like technology and physical expansion, trade is a defining characteristic of humanity. It is impossible to overstate its importance in human history and development.

So, how do we get trade, and all of its ancillary benefits, started on the new frontier of space? After finding things to trade – like lunar or Martian scientific knowledge or lunar water – trade is most likely encouraged by making both the upfront and ongoing costs of space transportation and operations as low as possible. That requires the most efficient possible use of whatever transportation is available. One way to increase efficiency is to employ a concept the trucking industry calls‚“backhaul.”

The administration of Donald Trump challenged NASA to aggressively return astronauts to Earth’s moon, and to prepare for going on to Mars. President Joe Biden’s administration appears to support continuation of that vision. A young administration confronted with a Congress precisely balanced between bitterly fighting political parties is unlikely to want to spend its limited political capital squabbling over space policy. That encourages continuity.

There also seems to be a new sense of reality at NASA. While senators appear to have headed off any attempt to cancel NASA’s vastly late and over-budget Saturn 5-class Space Launch System and freeing the resources it consumes for more useful purposes, NASA is doing what it can to minimize the SLS’s lost opportunity costs. Payloads that Congress baselined for the SLS have been moved to cheaper commercial rockets. NASA picked SpaceX’s largely self-funded, Starship-based lander for the Human Landing System. Boeing has been strongly urged to improve their dismal performance managing SLS — though there is little sign of that actually happening. Nonetheless, it is becoming possible to believe that a “lunar gateway” station, and maybe even early visits to the lunar surface, could actually occur – if not by 2024, at least within the decade of the 2020s.

In an early, lunar transportation architecture dependent on the expendable SLS, the astronaut capsule alone will return to Earth — usually with a small amount of spare volume and mass. Later when reusable spacecraft ply between Earth and her moon, and supplies are transported in one direction, empty or partially filled vehicles will return to be used again. Since the empty vehicles produce no value beyond returning for reuse, anything that allows space on them to be used or sold is a net gain for the transportation provider. In the trucking industry, goods “backhauled” in this way often pay extraordinarily low rates, subsidized by the primary purpose of moving the outbound goods. Crucially, the outbound cargo can be totally unrelated to the inbound backhaul.

Early first-generation vehicles will be severely constrained in both volume and mass, but even then backhaul may be relevant. Returning crew capsules could carry small items stored “under the seats.” These might include lunar samples desired by companies or scientists, or even wealthy individuals, in addition to those wanted by NASA. Low-mass ornaments or jewelry, like glass beads from ancient lunar volcanic “fire fountains” and other collectible mineral grains, whose value comes solely from their being obtained on Earth’s moon, are possible high-value items. Possible rare, high-value heavy elements or rare-earth elements collected from asteroid impact sites could be used in orbit or on Earth.

Tiny but abrasive and chemically reactive lunar dust particles can damage equipment and human lungs, so all samples need to be properly stored in sealed containers. After arrival on Earth, they must be cleaned before distribution to nonscientists.

Later, if second-generation lunar crew transportation vehicles were reusable, backhaul opportunities become much more attractive. After dropping crew and supplies off at a lunar base, cislunar supply vehicles would return empty, or with smaller return cargoes, to low Earth orbit or elsewhere in cislunar space. At that time, backhaul might become a real market.

The International Space Station and future semi-commercial stations, Lunar Gateway, applications satellites, and other activities in cislunar space need water and oxygen for propulsion, drinking, and breathing – both of which are readily available on Earth’s moon without having to lift them from Earth’s surface. Oxygen can be derived from oxidized surface rocks available in many locations, not only from polar water deposits. Water, because it is useful or necessary for so many things in so many places, has been called the “oil” of the solar system.

If NASA were to establish a science base on Earth’s moon, lunar water or oxygen might be backhauled for use at the cislunar facilities. If the market grows large enough, a dedicated lunar-to-LEO tanker industry could evolve – which might never happen if the infrastructure for supplying space facilities with lunar water had to be paid for up front and from scratch, before any water was delivered.

Backhaul allows trade to start small, possibly very small, early on while transportation infrastructure is still rudimentary. That could increase early income from lunar activities, amortizing some of the costs and encouraging growth, leading to earlier development of largescale commercial or semi-commercial industrial stations or orbital tourist facilities. Costs could be spread over multiple activities, in this case both science and commerce.

Similar ideas for incremental development are not new. Companies developing a new technology often take an incremental approach, earning money on partial solutions while developing their better mouse traps. SpaceX was able to parlay testing retro-propulsion deceleration technologies needed for their Falcon 9 reusable first stage —using rocket engine plumes to protect the vehicle during reentry — by trading test data useful for potential Mars missions with NASA.

The space agency flew aircraft with advanced thermal imaging sensors to observe reentering test vehicles paid for by SpaceX, and shared the results. NASA got data it could not otherwise afford while SpaceX got the data they needed to perfect firststage reentry without having to fly their own sensors.

Later, SpaceX went a step further. The company tested reusing Falcon 9 first stages while launching operational satellites for paying customers. The test could take place after the first stage had completed its operational mission of delivering the second stage and payload to the needed trajectory. The customer paid for the launch — presumably at a somewhat reduced price to accept the risk of flying with experimental hardware on board — while SpaceX got their test data without having to pay for a dedicated test launch.

The advent of a new partially commercialized lunar strategy is exciting, but it remains true that no lunar base is likely in the immediate future. That means no returning vehicles with excess capacity to sell cheap.

So, let’s look closer to home. There are already operational flights that could offer backhaul opportunities. Right now, there are three vehicles delivering crew or cargo to the ISS and returning to Earth: the Russian Soyuz, the SpaceX Crew Dragon, and the SpaceX Cargo Dragon. Soon the Boeing CST-100 Starliner and Sierra Nevada’s Dream Chaser will join the mix. Returning Soyuz and other returning crew vehicles have little excess capacity. Dragon Cargo is another story.

Dragon Cargo can return 3,000 kg in 10 cubic meters from the ISS. Because of various constraints like available volume and operational needs, Dragons usually do not return with their full theoretical capacity in cargo. On most return missions, small amounts of space could probably be found for backhaul. Soon, Dream Chaser will also return with substantial cargo capacity.

So, what might we backhaul from the International Space Station?

A company called Made In Space is deploying a series of ever-improving 3D printers to the station. Currently, these are used experimentally to make tools and parts needed on the station.

It is not hard to imagine using excess capacity or a second machine to print small novelty items for export to Earth on returning crew or cargo capsules. Such items might be quite valuable to those interested in space exploration, or in owning something truly unique. If backhaul costs were low enough, and especially if the prospective objects incorporated some property that could only be made in space, the market could be significant. If one entrepreneur makes a profit, others will follow, each with their own take. Some might even invent something useful that cannot be made on Earth.

While NASA has traditionally been resistant to using publicly owned infrastructure for profit-making businesses seen as frivolous, attitudes are changing. The Russians have fewer qualms, and one module already is privately owned and rented by NASA. Further private modules are planned for the very near future. If someone wanted to start a small business that used backhaul to get its products to Earth, they could probably find a way to do it, especially if production could be automated and not use valuable astronaut time.

If a few small businesses succeed, they could grow. At some point, volume might grow high enough for a consortium to purchase full-priced transportation to Earth. At that point, a mature industry will have arrived, and a trading economy will be firmly established.

Trade will have achieved yet another breakthrough for humanity — helping to pay for our expansion into the final frontier.


Donald F. Robertson is a freelance space industry journalist based in San Francisco. Follow him at @DonaldFR.

This article originally appeared in the September 2021 issue of SpaceNews magazine.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/op-ed-can-we-backhaul-our-way-to-space/

Continue Reading
Esports4 days ago

Here are all of CS:GO’s Operation Riptide skins

Esports4 days ago

How to start a Private Queue in CS:GO

Esports3 days ago

Can You Play Diablo II: Resurrected Offline?

Esports4 days ago

How to complete all week one missions in Operation Riptide

Esports4 days ago

Valve reveals CS:GO Operation Riptide, featuring private queue, short competitive games, new deathmatch modes, and more

Esports3 days ago

Failed to Enter Game, Character Could Not be Found: How to Fix Error in Diablo II: Resurrected

Esports4 days ago

Pokémon UNITE APK and OBB download links for Android

Esports4 days ago

CS:GO Riptide Case: Full List of New Skins

Esports5 days ago

5 Best Counters to Vex in League of Legends

Esports4 days ago

Some players unable to claim Pokémon UNITE mobile pre-registration rewards due to new error

Esports3 days ago

Valkyrae says YouTube is working on gifted members and a feature similar to Twitch Prime

Esports4 days ago

Initial reactions to the Worlds 2021 group draw: How does each team stack up against the field?

Esports3 days ago

Valkyrae says YouTube is working on gifted members and a feature similar to Twitch Prime

Esports1 day ago

Fall Guys achieves Guinness World Record for most downloaded PlayStation Plus game ever

Esports2 days ago

Best Stats for the Druid in Diablo II: Resurrected

Esports2 days ago

Microsoft’s The Initiative brings on Crystal Dynamics to help develop its Perfect Dark reboot

Blockchain3 days ago

United States Infrastructure Bill Brings Cardano Billionaire to Washington.

Blockchain5 days ago

Bitcoin & Ethereum Options Expiry on September 24th, What Does This Mean for the BTC and ETH Price?

Energy4 days ago

Carbon Nanotubes Market size worth $ 20.31 Billion, Globally, by 2028 at 17.27% CAGR: Verified Market Research®

Esports4 days ago

How to redeem Operation Riptide’s rewards in CS:GO

Trending