Zephyrnet Logo

Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy

Date:

  • 1.

    Lee, B., Paek, E., Mitlin, D. & Lee, S. W. Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019).

    CAS  Article  Google Scholar 

  • 2.

    Zhao, Y. et al. In situ formation of highly controllable and stable Na3PS4 as a protective layer for Na metal anode. J. Mater. Chem. A 7, 4119–4125 (2019).

    CAS  Article  Google Scholar 

  • 3.

    Zheng, J. et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018).

    CAS  Article  Google Scholar 

  • 4.

    Luo, W. et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 17, 3792–3797 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Liu, S. et al. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 17, 5862–5868 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Zhou, W., Li, Y., Xin, S. & Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Rodriguez, R. et al. In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett. 2, 2051–2057 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Li, X., Zhao, L., Li, P., Zhang, Q. & Wang, M.-S. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy 42, 122–128 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Gao, L. et al. Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries. J. Mater. Chem. A 6, 12012–12017 (2018).

    CAS  Article  Google Scholar 

  • 11.

    Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid–electrolyte–electrode interface. Nat. Commun. 8, 1086 (2017).

    Article  Google Scholar 

  • 12.

    Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Chang, H. J. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 137, 15209–15216 (2015).

    CAS  Article  Google Scholar 

  • 15.

    Kim, H. et al. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives. Electrochim. Acta 136, 157–165 (2014).

    CAS  Article  Google Scholar 

  • 16.

    Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    CAS  Article  Google Scholar 

  • 17.

    Iermakova, D. I., Dugas, R., Palacin, M. R. & Ponrouch, A. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. J. Electrochem. Soc. 162, A7060–A7066 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Cao, R. et al. Enabling room temperature sodium metal batteries. Nano Energy 30, 825–830 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Choudhury, S. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).

    Article  Google Scholar 

  • 21.

    Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    CAS  Article  Google Scholar 

  • 22.

    Yui, Y., Hayashi, M. & Nakamura, J. In situ microscopic observation of sodium deposition/dissolution on sodium electrode. Sci. Rep. 6, 22406 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Zhao, C. et al. Advanced Na metal anodes. J. Energy Chem. 27, 1584–1596 (2018).

    Article  Google Scholar 

  • 24.

    Wu, B., Lochala, J., Taverne, T. & Xiao, J. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 40, 34–41 (2017).

    CAS  Article  Google Scholar 

  • 25.

    Bayley, P. M., Trease, N. M. & Grey, C. P. Insights into electrochemical sodium metal deposition as probed with in situ 23Na NMR. J. Am. Chem. Soc. 138, 1955–1961 (2016).

    CAS  Article  Google Scholar 

  • 26.

    Cheng, X.-B., Yan, C., Zhang, X.-Q., Liu, H. & Zhang, Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3, 1564–1570 (2018).

    CAS  Article  Google Scholar 

  • 27.

    Reeve, Z. E. et al. Detection of electrochemical reaction products from the sodium-oxygen cell with solid-state 23Na NMR spectroscopy. J. Am. Chem. Soc. 139, 595–598 (2017).

    CAS  Article  Google Scholar 

  • 28.

    Wang, D. et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J. Mater. Chem. A 2, 20271–20279 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  • 31.

    Jin, Y. et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Bray, J. M. et al. Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nat. Commun. 11, 2083 (2020).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-0749-7

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?