Zephyrnet Logo

Ultra-high-frequency radio-frequency acoustic molecular imaging with saline nanodroplets in living subjects

Date:

  • 1.

    Gambhir, S. S., Ge, T. J., Vermesh, O. & Spitler, R. Toward achieving precision health. Sci. Transl. Med. 10, eaao3612 (2018).

    Article  Google Scholar 

  • 2.

    Hamilton, W., Walter, F. M., Rubin, G. & Neal, R. D. Improving early diagnosis of symptomatic cancer. Nat. Rev. Clin. Oncol. 13, 740–749 (2016).

    Article  Google Scholar 

  • 3.

    Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    CAS  Article  Google Scholar 

  • 4.

    Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).

    CAS  Article  Google Scholar 

  • 5.

    Weissleder, R. & Mahmood, U. Molecular imaging. Radiology 219, 316–333 (2001).

    CAS  Article  Google Scholar 

  • 6.

    Hussain, T. & Nguyen, Q. T. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev. 66, 90–100 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Willmann, J. K., van Bruggen, N., Dinkelborg, L. M. & Gambhir, S. S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008).

    CAS  Article  Google Scholar 

  • 8.

    Pysz, M. A., Gambhir, S. S. & Willmann, J. K. Molecular imaging: current status and emerging strategies. Clin. Radiol. 65, 500–516 (2010).

    CAS  Article  Google Scholar 

  • 9.

    Lin, E. C. Radiation risk from medical imaging. Mayo Clin. Proc. 85, 1142–1146 (2010).

    Article  Google Scholar 

  • 10.

    James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiological Rev. 92, 897–965 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Loskutova, K., Grishenkov, D. & Ghorbani, M. Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics. BioMed. Res. Int. 2019, 9480193 (2019).

    Article  CAS  Google Scholar 

  • 12.

    Jokerst, J. V. & Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011).

    CAS  Article  Google Scholar 

  • 13.

    Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    CAS  Article  Google Scholar 

  • 14.

    Bowen, T. in Proc. 1981 IEEE Ultrasonics Symposium 817–822 (IEEE, 1981).

  • 15.

    Kruger, R. A. et al. Thermoacoustic CT with radio waves: a medical imaging paradigm. Radiology 211, 275–278 (1999).

    CAS  Article  Google Scholar 

  • 16.

    Ku, G. et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat. 4, 559–565 (2005).

    Article  Google Scholar 

  • 17.

    Kruger, R. A., Reinecke, D. R. & Kruger, G. A. Thermoacoustic computed tomography—technical considerations. Med. Phys. 26, 1832–1837 (1999).

    CAS  Article  Google Scholar 

  • 18.

    Wen, L. W., Yang, S. H., Zhong, J. P., Zhou, Q. & Xing, D. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles. Theranostics 7, 1976–1989 (2017).

    CAS  Article  Google Scholar 

  • 19.

    Kruger, R. A. et al. Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study. Radiology 216, 279–283 (2000).

    CAS  Article  Google Scholar 

  • 20.

    Omar, M., Kellnberger, S., Sergiadis, G., Razansky, D. & Ntziachristos, V. Near-field thermoacoustic imaging with transmission line pulsers. Med. Phys. 39, 4460–4466 (2012).

    Article  Google Scholar 

  • 21.

    Laqua, D., Just, T. & Husar, P. in Proc. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1437–1440 (IEEE, 2010).

  • 22.

    Ogunlade, O. & Beard, P. Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med. Phys. 42, 170–181 (2016).

    Article  Google Scholar 

  • 23.

    Byrd, D., Hanson, G.W. & Patch, S.K. in Proc. SPIE 7564, Photons Plus Ultrasound: Imaging and Sensing 2010, 756417 (SPIE, 2010).

  • 24.

    Wu, D., Huang, L., Jiang, M. S. & Jiang, H. Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int. J. Mol. Sci. 15, 23616 (2014).

    Article  CAS  Google Scholar 

  • 25.

    Nie, L., Ou, Z., Yang, S. & Xing, D. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys. 37, 4193–4200 (2010).

    CAS  Article  Google Scholar 

  • 26.

    Tamarov, K. et al. Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine. Phys. Chem. Chem. Phys. 19, 11510–11517 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Weast, R.C. CRC Handbook of Chemistry and Physics 70th edn (CRC Press, 1989).

  • 28.

    Wolf, A. V. Aqueous Solutions and Body Fluids (Harper & Row, 1966).

    Google Scholar 

  • 29.

    Engel, R. H., Riggi, S. J. & Fahrenbach, M. J. Insulin: intestinal absorption as water-in-oil-in-water emulsions. Nature 219, 856–857 (1968).

    CAS  Article  Google Scholar 

  • 30.

    Gresham, P. A., Barnett, M., Smith, S. V. & Schneider, R. Use of a sustained-release multiple emulsion to extend the period of radioprotection conferred by cysteamine. Nature 234, 149 (1971).

    CAS  Article  Google Scholar 

  • 31.

    Garti, N. & Bisperink, C. Double emulsions: progress and applications. Curr. Opin. Colloid Interface Sci. 3, 657–667 (1998).

    CAS  Article  Google Scholar 

  • 32.

    Muschiolik, G. Multiple emulsions for food use. Curr. Opin. Colloid Interface Sci. 12, 213–220 (2007).

    CAS  Article  Google Scholar 

  • 33.

    Chong, D. et al. Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluidics Nanofluidics 19, 1071–1090 (2015).

    CAS  Article  Google Scholar 

  • 34.

    Chen, L. et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch. Adv. Optical Mater. 2, 845–848 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Mezzenga, R., Folmer, B. M. & Hughes, E. Design of double emulsions by osmotic pressure tailoring. Langmuir 20, 3574–3582 (2004).

    CAS  Article  Google Scholar 

  • 36.

    Wen, L. & Papadopoulos, K. D. Effects of osmotic pressure on water transport in W1/O/W2 emulsions. J. Colloid Interface Sci. 235, 398–404 (2001).

    CAS  Article  Google Scholar 

  • 37.

    Atzberger, P. J. & Kramer, P. R. Theoretical framework for microscopic osmotic phenomena. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 061125 (2007).

    Article  CAS  Google Scholar 

  • 38.

    Freire, M. G., Dias, A. M. A., Coelho, M. A. Z., Coutinho, J. A. P. & Marrucho, I. M. Aging mechanisms of perfluorocarbon emulsions using image analysis. J. Colloid Interface Sci. 286, 224–232 (2005).

    CAS  Article  Google Scholar 

  • 39.

    Hilder, M. H. The solubility of water in edible oils and fats. J. Am. Oil Chem. Soc. 45, 703–707 (1968).

    CAS  Article  Google Scholar 

  • 40.

    Freire, M. G., Gomes, L., Santos, L. M., Marrucho, I. M. & Coutinho, J. A. Water solubility in linear fluoroalkanes used in blood substitute formulations. J. Phys. Chem. B 110, 22923–22929 (2006).

    CAS  Article  Google Scholar 

  • 41.

    Rotariu, G., Fraga, D. & Hildebrand, J. The solubility of water in normal perfluoroheptane. J. Am. Chem. Soc. 75, 6357–6357 (1953).

    Article  Google Scholar 

  • 42.

    Shpak, O. et al. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc. Natl Acad. Sci. USA 111, 1697–1702 (2014).

    CAS  Article  Google Scholar 

  • 43.

    Vernikouskaya, I., Pochert, A., Lindén, M. & Rasche, V. Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception. Magn. Reson. Mater. Phys., Biol. Med. 32, 25–36 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Tran, T. D. et al. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2, 515–526 (2007).

    CAS  Google Scholar 

  • 45.

    Joseph, G. M. & Noah, W. Poloxamer 188 (P188) as a membrane resealing reagent in biomedical applications. Recent Pat. Biotechnol. 6, 200–211 (2012).

    Google Scholar 

  • 46.

    Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  • 47.

    Sakai, T., Kamogawa, K., Nishiyama, K., Sakai, H. & Abe, M. Molecular diffusion of oil/water emulsions in surfactant-free conditions. Langmuir 18, 1985–1990 (2002).

    CAS  Article  Google Scholar 

  • 48.

    Doinikov, A. A., Sheeran, P. S., Bouakaz, A. & Dayton, P. A. Vaporization dynamics of volatile perfluorocarbon droplets: a theoretical model and in vitro validation. Med. Phys. 41, 102901 (2014).

    Article  CAS  Google Scholar 

  • 49.

    Pitt, W. G., Singh, R. N., Perez, K. X., Husseini, G. A. & Jack, D. R. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason. Sonochem. 21, 879–891 (2014).

    CAS  Article  Google Scholar 

  • 50.

    Cornelio, D. B., Roesler, R. & Schwartsmann, G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann. Oncol. 18, 1457–1466 (2007).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00869-5

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?