Connect with us

Aerospace

U.S. Space Force clears reused SpaceX rocket for launch with GPS satellite

Published

on

The U.S. Space Force’s fifth GPS 3-series navigation satellite was encapsulated inside the payload fairing of SpaceX’s Falcon 9 rocket June 9 at the Astrotech payload processing facility in Titusville, Florida. Credit: Lockheed Martin

Following years of planning, a GPS navigation satellite built by Lockheed Martin will be the first operational U.S. military payload to ride a reused SpaceX booster on a launch from Florida Thursday, laying the groundwork for future national security missions to save money by incorporating recycled rocket parts.

SpaceX has launched 66 reused boosters with a flawless success record since March 2017. But the launch Thursday from Cape Canaveral Space Force Station will be the first time military officials have entrusted a high-priority national security payload with a ride on a reused first stage.

The certification of reused Falcon 9 boosters for national security payloads could save taxpayers hundreds of millions of dollars in the next few years. It has already resulted in $64 million in savings on a contract covering multiple GPS launches, including the mission set for liftoff Thursday.

“In preparation for this first-time event, we’ve worked closely with SpaceX understand the refurbishment processes and are confident that this rocket is ready for its next flight,” said Walter Lauderdale, the deputy mission director and Falcon division chief at the Space Force’s Space and Missile Systems Center.

The Global Positioning System satellite set for launch Thursday is the fifth in the latest generation of GPS spacecraft. Designated GPS 3 SV05, and nicknamed “Neil Armstrong,” the satellite is closed up inside the Falcon 9 rocket’s payload fairing awaiting launch.

It will join 31 operational GPS satellites orbiting about 12,550 miles (20,200 kilometers) above Earth providing positioning, navigation, and timing signals to billions of users around the world.

Liftoff is scheduled for 12:09:35 p.m. EDT (1609:35 GMT) Thursday from pad 40 at Cape Canaveral Space Force Station in Florida. The launch window Thursday extends for 15 minutes.

The weather forecast is iffy, however, with a 70% chance of acceptable conditions for liftoff and a moderate risk of unfavorable upper level winds. The main weather concerns Thursday are with potential cumulus clouds and lightning in the area.

The first stage booster set to liftoff Thursday flew for the first time last November on the launch of the most recent GPS mission, when it landed on an offshore drone ship. Before that mission, military officials said the rocket would be reused on the next GPS launch.

Lauderdale said the military has been working since 2016 on certifying the use of reused rocket hardware on national security satellite launches. SpaceX and United Launch Alliance, the Space Force’s two primary space launch providers, can propose to use previously-flown hardware on all national security missions under new contracts awarded last August.

But the Space Force agreed to begin launching GPS missions on reused rockets earlier than planned. The military and SpaceX amended existing contracts to make the change to allow for recovery of the Falcon 9 booster on four GPS missions, and the reuse of the booster on two launches, reducing SpaceX’s charge to the government by $64 million.

“Through continued partnership with SpaceX, we were able to reach an agreement to accelerate our use of previously-flown hardware for GPS missions,” Lauderdale told reporters in a teleconference Monday.

The 9,550-pound (4,331-kilogram) GPS 3 SV05 satellite is prepared for encapsulation inside the Falcon 9 payload fairing. Credit: Lockheed Martin

SpaceX has flown one of the Falcon 9 boosters in its fleet 10 times, and several others have completed five or more missions.

A military launch in 2019 of a Falcon Heavy rocket, which SpaceX created by bolting together three Falcon 9 cores, used two previously-flown side boosters. But that mission carried experimental technology demonstration satellites, not an operational payload like a GPS spacecraft.

Since agreeing to put the GPS 3 SV05 spacecraft on a reused booster, the Space Force formally certified SpaceX’s recovery and refurbishment processes. That non-recurring work will make it easier to regularly fly national security payloads on reused Falcon 9s in the future, Lauderdale said.

Technicians with the 5th Space Launch Squadron at Cape Canaveral follow SpaceX’s refurbishment of reused rockets. Compared to many commercial satellite operators, the Space Force performs additional oversight of its launch contractors due to the high cost and criticality of its payloads for U.S. national security.

“Working with SpaceX, we evaluate their inspection processes as well as what they have done to evaluate the hardware after it returns,” Lauderdale said.

The work included establishing how to evaluate the remaining life of a Falcon 9 booster by analyzing the stress it encounters during launch and re-entry back into the atmosphere. SpaceX’s busy launch schedule — this will be the 19th Falcon 9 launch of the year — has given military officials plenty of data to crunch, and added to their confidence ini launching

“We evaluate all of that and compare that, in essence, to see how much of the life of any other components may have been consumed by what it’s seen during flight,” Lauderdale said. “So that flight data has been very helpful for us in assessing how much life is remaining.

The Space Force “will continue to evaluate that data as we look at potential for going beyond the second flight of a particular booster,” he said.

Lauderdale said the launch Thursday will use a brand new payload fairing, which protects the satellite during launch. He said SpaceX could propose reusing the nose cone on future national security missions.

The GPS 3 SV05 satellite moves to SpaceX’s hangar Sunday for mating with the Falcon 9 rocket. Credit: Spaceflight Now

The GPS 3 SV05 satellite arrived on Florida’s Space Coast in April from its Lockheed Martin factory in Colorado. After delivery on an Air Force C-5 cargo plane, the spacecraft passed final checkouts and was fueled with hydrazine and nitrogen tetroxide maneuvering propellants.

The fully fueled satellite weighs approximately 9,550 pounds, or 4,331 kilograms, according to Col. Edward Byrne, senior materiel leader for Medium Earth Orbit systems at SMC.

Technicians encapsulated the spacecraft inside SpaceX’s payload fairing June 9 at the commercial Astrotech payload processing facility in Titusville.

Meanwhile, SpaceX ground crews at pad 40 rolled the Falcon 9 rocket to its launch mount and raised it vertical for a brief test-firing Saturday. After the static fire test, SpaceX returned the rocket to its hangar a quarter-mile away for connection with the GPS 3 SV05 spacecraft and its payload shroud.

The satellite and payload fairing traveled by truck from the Astrotech processing facility to the pad 40 hangar Sunday.

SpaceX will transfer the fully-assembled rocket back to pad 40 and raise it upright again ahead of Thursday’s countdown.

Three of the Space Force’s first four new-generation GPS 3-series navigation satellites have launched on Falcon 9 rockets from SpaceX. Another GPS 3 satellite lifted off on Delta 4 rocket from SpaceX rival United Launch Alliance.

The upgraded series of GPS 3 navigation satellites are designed for 15-year life spans, an improvement over the seven-and-a-half year and 12-year design lives of previous-generation GPS satellites.

Th GPS 3 satellites provide three times better accuracy and up to eight times improved anti-jamming capabilities over early GPS spacecraft, according to Lockheed Martin.

The GPS 3 satellites also introduce a new L-band civilian signal that is compatible with other international navigation satellite networks, such as Europe’s Galileo program. Combining signals from GPS, Galileo, and other navigation satellites can improve the precision of space-based position measurements.

The U.S. military uses GPS satellites for smart bombs and other precision-guided munitions. Troops rely on the network, which requires a minimum of 24 satellites for global coverage, to provide positioning data pole-to-pole.

With GPS 3 SV05, the GPS fleet with have 24 satellites capable of beaming an encrypted military-grade navigation signal known as M-code, enough for worldwide M-code coverage. The oldest GPS satellites still in the fleet are outfitted with M-code.

The M-code signal allows GPS satellites to broadcast higher-power, jam-resistant signals over specific regions, such as a military theater or battlefield. The capability provides U.S. and allied forces with more reliable navigation services, and could also allow the military to intentionally disrupt or jam civilian-grade GPS signals in a particular region, while the M-code signal remains unimpeded.

L3Harris Technologies builds the navigation payloads for the GPS 3 satellites.

Civilians use the Global Positioning System on their smartphones, and airliners employ augmented GPS signals for precision landings and in-flight navigation. Banks use the timing signals from GPS satellites to time tag financial transactions.

Byrne said Monday that the GPS 3 SV05 satellite will operate in Plane D, Slot 1, of the GPS constellation. That position is currently occupied by a GPS satellite that launched from Cape Canaveral on Nov. 6, 2004, on a Delta 2 rocket.

The Falcon 9 rocket for the GPS 3 SV05 mission was test-fired Saturday on pad 40. Credit: Steven Young / Spaceflight Now

On Thursday’s mission, SpaceX’s Falcon 9 rocket will head northeast from Cape Canaveral to align with an orbital plane in the GPS fleet inclined at 55 degrees to the equator.

The rocket’s nine Merlin 1D first stage engines will fire for about two-and-a-half minutes before shutting down, allowing the booster to separate and begin descending back to SpaceX’s drone ship “Just Read the Instructions” in the Atlantic Ocean.

A second stage engine will fire two times to inject the GPS satellite into an elongated orbit with its highest point, or apogee, near the GPS network’s operating altitude of 12,550 miles.

Deployment of the GPS 3 SV05 spacecraft from the Falcon 9’s upper stage is expected about 90 minutes after liftoff.

The Falcon 9’s first stage, meanwhile, will land on the drone ship about eight-and-half minutes into the mission. The vessel will return to Port Canaveral with the rocket, which will be refurbished for another launch.

Lauderdale said booster will return to SpaceX’s rotation of reused rockets for use on commercial missions. The Space Force’s next GPS launch in 2022 will use a different previously-flown Falcon 9 rocket.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://spaceflightnow.com/2021/06/16/us-space-force-clears-reused-spacex-rocket-for-launch-with-gps-satellite/

Aerospace

Op-ed | Peace in the Era of Weaponized Space

Published

on

We are on the verge of a new era in space security: the age of diverse and highly capable dual-use space systems that can serve both peaceful and anti-satellite (ASAT) purposes. These new systems, such as spacecraft capable of undertaking rendezvous and proximity operations (RPOs), ground-based lasers capable of interacting with space objects, and actions in cyberspace, cannot feasibly be banned; nor should they be, as they promise immense civil and commercial benefits. Instead, we must find ways to maintain peace despite their presence.

“Beijing actively seeks space superiority through space and space attack systems. One notable object is the Shijian-17, a Chinese satellite with a robotic arm. Space-based robotic arm technology could be used in a future system for grappling other satellites.” — U.S. Army Gen. James Dickinson, testifying April 20 before the Senate Armed Services Committee. Credit: DoD photo by EJ Hersom

The steps currently being taken by the United States to mitigate counterspace threats are necessary but they will not alone be sufficient — the next generation of ASAT weapons will pose a much greater threat than current systems, and require tailored responses. We stand, as we did in the 1950s and 1960s, at the brink of poorly understood but potentially catastrophic risks. The solution now is the same as it was then: first, to exploit the United States.’ democratic advantage in untapped intellectual capital; and second, to harness the power of dissent and rigorous contestation to improve predictions, strategic planning, and cost-effective readiness. To that end, the U.S. Department of Defense should establish an open and permanent forum for submission of ideas by all concerned parties, both inside and outside government, and facilitate on-the-record debate regarding their validity and desirability.

Three next-generation ASATs likely to mature during the 2020s — namely rendezvous spacecraft, ground-based lasers, and cyberattacks — illustrate the urgent need for collaboration, critical interrogation of assumptions, and (re-) examination of a wide range of old and new ideas. All three ASAT types can be developed and deployed under the guise of peaceful applications. Each of these threat vectors will, as they advance, enable counterspace operations with substantially greater strategic and operational impact than is currently achievable.

Moreover, all three next-gen ASATs can be used while producing little space debris — a feature clearly important to China, as evidenced by its pivot to non-debris-producing ASAT tests following major international backlash to its 2007 test of a direct-ascent ASAT, namely a ground-launched ballistic missile that generated thousands of pieces of long-lasting space junk when it collided with China’s Fengyun-1C weather satellite.

THE DUAL UTILITY OF SATELLITE-SERVICING SPACECRAFT

Rendezvous spacecraft provide an excellent case study in the challenges plaguing the status quo. These spacecraft are inherently dual-use: if a satellite can remove space debris from orbit or grapple a friendly satellite for servicing (e.g., for repair, refueling, or in situ upgrades), then it can likely also grapple an adversary’s satellite to change its orbit or disable it. Since 2018, at least 11 high-level space officials and organizations (including former Vice President Mike Pence, Gen. John Hyten, and Gen. John Raymond) have expressed concerns that such RPO spacecraft could be used to threaten our critical satellites from close range. Gen. James Dickinson, the commander of U.S. Space Command, is one of the latest voices to join this authoritative group, testifying on April 20 before the Senate Armed Services Committee that:

“Beijing actively seeks space superiority through space and space attack systems. One notable object is the Shijian-17, a Chinese satellite with a robotic arm. Space-based robotic arm technology could be used in a future system for grappling other satellites.”

It is good news that U.S. government awareness of the rendezvous threat is growing. However, the signs that it is on the horizon have been there for years (China testing began in 2008, if not earlier) and a decade or more is far too long a lag in threat recognition. Worse yet, noticing a serious threat is merely the first step in a chain of traditionally time-consuming moves — e.g., selecting a solution, developing a concept of operations, programming the acquisition, and deploying the measures — to ready our deterrence and defenses. To adequately deal with emerging threat vectors, the U.S. must greatly expedite these processes.

In addition, the solutions required for many next-gen ASATs must be carefully tailored and crosscutting. Three facets of the rendezvous threat illustrate this particularly well.

First, in 2018, the Committee on the Peaceful Uses of Outer Space attempted to establish voluntary “measures for the safe conduct of proximity space operations,” but they were promptly blocked by Russia. This highlights that discussions in decision-by-consensus international forums cannot be relied upon to solve the rendezvous threat unless reinforced by external action. China and Russia have a strong incentive to block any such rules — namely, that they could undercut China and Russia’s ability to hold our critical satellites at risk by positioning rendezvous attackers arbitrarily close to them. There are, however, means by which the U.S. could incentivize agreement and compliance: for example, the U.S. could attach economic incentives (e.g. conditioning market access), or push for the use of lawful countermeasures to enforce international legal obligations such as the Outer Space Treaty’s Article IX requirement of “due regard.” But identifying and implementing the ideal solution will not be easy: this exemplifies an issue on which a range of experts should propose alternatives, debate one another, and synthesize the results.

Second, replacing legacy constellations comprised of small numbers of large and expensive satellites with new proliferated constellations of many small, inexpensive satellites has gathered many proponents as a means of reducing vulnerability. Doing so is indeed necessary, but it cannot adequately counter the rendezvous threat. This is because for certain critical and vulnerable satellites in higher orbits — e.g., SBIRS early missile warning satellites, and AEHF satellites for communications in nuclear-disrupted environment — proliferated constellations are technically infeasible, prohibitively costly, or both. Additionally, as noted by Christopher Scolese, Director of the National Reconnaissance Office, there will be “some number of large [and vulnerable] satellites to address questions that only they can.” Thus, these legacy systems and their similar follow-ons are likely to remain vulnerable well into the 2030s, requiring timely warning and defense mechanisms to keep them safe.

Even GPS is likely to be vulnerable by the late 2020s. Thus far, GPS has been broadly resilient to ASAT attack due to various countermeasures and its redundant design. The GPS constellation consists of about three dozen satellites, each orbiting twice daily, only four of which need to be over a given area at once to sustain service. For this reason, degradation is gradual, not catastrophic: even destroying six satellites at once would only deny service to a localized area for about 95 minutes per day. If, however, one could disable most of the constellation, the result would be near-total loss of GPS services worldwide. While this is largely infeasible with current ASATs, by the late 2020s China may have enough RPO-capable small spacecraft to preposition near every GPS satellite, allowing at-will disablement of the entire constellation. These threats underscore the need to carefully examine each next-generation ASAT individually, in order to identify in advance any unique characteristics which might upend prior assumptions. Doing so is the only way to avoid strategic surprise, and would reveal which threats do (and don’t) deserve priority and how solutions should be designed.

Third, the forum would facilitate serious and open debate regarding what capabilities the U.S. should procure and field, and how to do so in time (likely but a few short years). Most counters to the rendezvous threat, for example, will likely require bodyguard spacecraft to implement. This is feasible: both the U.S. government (e.g. DARPA) and the private sector (e.g. Northrop Grumman) have demonstrated increasingly sophisticated RPO capabilities, including the ability to autonomously dock with a target in GEO and make such spacecraft far smaller and cheaper (e.g. via DARPA’s Blackjack program). Despite these advances, however, the U.S. has yet to develop spacecraft for active defense, much less deploy them, and its handful of RPO-capable spacecraft are 10 times as heavy — and, probably, costly — as those under development by Russia and China. The U.S. must quickly develop and deploy bodyguards comparable in quantity and cost to the potential rendezvous ASATs it faces, or it risks adversaries being able to overwhelm our defenses.

LASERS AND CYBERATTACKS

Nor is the need for such a forum limited to rendezvous spacecraft. Two other emergent ASAT threats reveal similar requirements and lack of preparation: ground-based lasers (GBLs) and cyberattacks. As U.S. intelligence agencies including the Defense Intelligence Agency have noted, GBLs will almost certainly become much more capable over the next decade, moving from dazzling or harming sensors to damaging external structures on satellites in LEO. This fundamentally changes the nature of the threat, and requires new solutions — yet, to date, there has been little discussion of such solutions.

Cybersecurity, too, requires swift action and innovative thinking. Many commercial and civilian space systems remain vulnerable. As the U.S. plans to continue increasing military integration with commercial systems, security standards must be improved. Additionally, there is little basis for confidence that military space systems, and particularly their ground segments, are truly cyber-secure now, or that they will remain so going forward.

At the same time, potential adversaries’ cyber capabilities and doctrine are advancing quickly. China’s rapid progress in emerging technology fields could also be a game-changer. One example is Chinese development of quantum communications satellite technology which, as evidenced by the launch of its Micius satellite in 2016, leads all other countries; the result could be that they can hack our space systems but hamstring U.S. response via quantum cryptography.

WHAT’S NEEDED TO KEEP PEACE

As these cases highlight, navigating the era of weaponized space will require a meeting of the minds. For this reason, the Biden administration should establish an institutional mechanism through which a range of ideas can be solicited, exchanged, and directly challenged and defended to filter the signal from the noise.

There is precedent for this. On his first day in office, President Obama signed the Memorandum on Open Government, which stated that “executive departments and agencies should offer Americans increased opportunities to participate in policymaking.” The ensuing Open Government Directive reaffirmed that “the three principles of transparency, participation, and collaboration form the cornerstone of an open government,” and led DOD to quickly establish its Open Government Plan (OGP).

The Biden administration should direct DoD to build on its OGP by adding an Initiative on Public Collaboration for Peace and Prosperity in Space. The first project should be a series of workshops in which relevant experts from the Pentagon and its partners (e.g., contractors and Federally Funded R&D Centers) collaborate with outside experts to assess, compare, and synthesize different proposals to counter specific, individual ASAT threats emerging in the 2020s and 2030s.

As a democracy, the U.S. naturally generates a diversity of ideas. We can either keep them in silos, as we do now, or we can exchange these ideas and subject them to rigorous cross-examination and potential cross-pollination. Standing now at the brink of a new era of weaponized space, our choice should be clear.


Brian Chow is an independent policy analyst with over 160 publications. He can be reached at [email protected] Brandon Kelley is the Director of Debate at Georgetown University, and a graduate student in the Security Studies Program. He can be reached at [email protected]

This article originally appeared in the July 2021 issue of SpaceNews magazine.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/op-ed-peace-in-the-era-of-weaponized-space/

Continue Reading

Aerospace

Op-ed | Peace in the Era of Weaponized Space

Published

on

We are on the verge of a new era in space security: the age of diverse and highly capable dual-use space systems that can serve both peaceful and anti-satellite (ASAT) purposes. These new systems, such as spacecraft capable of undertaking rendezvous and proximity operations (RPOs), ground-based lasers capable of interacting with space objects, and actions in cyberspace, cannot feasibly be banned; nor should they be, as they promise immense civil and commercial benefits. Instead, we must find ways to maintain peace despite their presence.

“Beijing actively seeks space superiority through space and space attack systems. One notable object is the Shijian-17, a Chinese satellite with a robotic arm. Space-based robotic arm technology could be used in a future system for grappling other satellites.” — U.S. Army Gen. James Dickinson, testifying April 20 before the Senate Armed Services Committee. Credit: DoD photo by EJ Hersom

The steps currently being taken by the United States to mitigate counterspace threats are necessary but they will not alone be sufficient — the next generation of ASAT weapons will pose a much greater threat than current systems, and require tailored responses. We stand, as we did in the 1950s and 1960s, at the brink of poorly understood but potentially catastrophic risks. The solution now is the same as it was then: first, to exploit the United States.’ democratic advantage in untapped intellectual capital; and second, to harness the power of dissent and rigorous contestation to improve predictions, strategic planning, and cost-effective readiness. To that end, the U.S. Department of Defense should establish an open and permanent forum for submission of ideas by all concerned parties, both inside and outside government, and facilitate on-the-record debate regarding their validity and desirability.

Three next-generation ASATs likely to mature during the 2020s — namely rendezvous spacecraft, ground-based lasers, and cyberattacks — illustrate the urgent need for collaboration, critical interrogation of assumptions, and (re-) examination of a wide range of old and new ideas. All three ASAT types can be developed and deployed under the guise of peaceful applications. Each of these threat vectors will, as they advance, enable counterspace operations with substantially greater strategic and operational impact than is currently achievable.

Moreover, all three next-gen ASATs can be used while producing little space debris — a feature clearly important to China, as evidenced by its pivot to non-debris-producing ASAT tests following major international backlash to its 2007 test of a direct-ascent ASAT, namely a ground-launched ballistic missile that generated thousands of pieces of long-lasting space junk when it collided with China’s Fengyun-1C weather satellite.

THE DUAL UTILITY OF SATELLITE-SERVICING SPACECRAFT

Rendezvous spacecraft provide an excellent case study in the challenges plaguing the status quo. These spacecraft are inherently dual-use: if a satellite can remove space debris from orbit or grapple a friendly satellite for servicing (e.g., for repair, refueling, or in situ upgrades), then it can likely also grapple an adversary’s satellite to change its orbit or disable it. Since 2018, at least 11 high-level space officials and organizations (including former Vice President Mike Pence, Gen. John Hyten, and Gen. John Raymond) have expressed concerns that such RPO spacecraft could be used to threaten our critical satellites from close range. Gen. James Dickinson, the commander of U.S. Space Command, is one of the latest voices to join this authoritative group, testifying on April 20 before the Senate Armed Services Committee that:

“Beijing actively seeks space superiority through space and space attack systems. One notable object is the Shijian-17, a Chinese satellite with a robotic arm. Space-based robotic arm technology could be used in a future system for grappling other satellites.”

It is good news that U.S. government awareness of the rendezvous threat is growing. However, the signs that it is on the horizon have been there for years (China testing began in 2008, if not earlier) and a decade or more is far too long a lag in threat recognition. Worse yet, noticing a serious threat is merely the first step in a chain of traditionally time-consuming moves — e.g., selecting a solution, developing a concept of operations, programming the acquisition, and deploying the measures — to ready our deterrence and defenses. To adequately deal with emerging threat vectors, the U.S. must greatly expedite these processes.

In addition, the solutions required for many next-gen ASATs must be carefully tailored and crosscutting. Three facets of the rendezvous threat illustrate this particularly well.

First, in 2018, the Committee on the Peaceful Uses of Outer Space attempted to establish voluntary “measures for the safe conduct of proximity space operations,” but they were promptly blocked by Russia. This highlights that discussions in decision-by-consensus international forums cannot be relied upon to solve the rendezvous threat unless reinforced by external action. China and Russia have a strong incentive to block any such rules — namely, that they could undercut China and Russia’s ability to hold our critical satellites at risk by positioning rendezvous attackers arbitrarily close to them. There are, however, means by which the U.S. could incentivize agreement and compliance: for example, the U.S. could attach economic incentives (e.g. conditioning market access), or push for the use of lawful countermeasures to enforce international legal obligations such as the Outer Space Treaty’s Article IX requirement of “due regard.” But identifying and implementing the ideal solution will not be easy: this exemplifies an issue on which a range of experts should propose alternatives, debate one another, and synthesize the results.

Second, replacing legacy constellations comprised of small numbers of large and expensive satellites with new proliferated constellations of many small, inexpensive satellites has gathered many proponents as a means of reducing vulnerability. Doing so is indeed necessary, but it cannot adequately counter the rendezvous threat. This is because for certain critical and vulnerable satellites in higher orbits — e.g., SBIRS early missile warning satellites, and AEHF satellites for communications in nuclear-disrupted environment — proliferated constellations are technically infeasible, prohibitively costly, or both. Additionally, as noted by Christopher Scolese, Director of the National Reconnaissance Office, there will be “some number of large [and vulnerable] satellites to address questions that only they can.” Thus, these legacy systems and their similar follow-ons are likely to remain vulnerable well into the 2030s, requiring timely warning and defense mechanisms to keep them safe.

Even GPS is likely to be vulnerable by the late 2020s. Thus far, GPS has been broadly resilient to ASAT attack due to various countermeasures and its redundant design. The GPS constellation consists of about three dozen satellites, each orbiting twice daily, only four of which need to be over a given area at once to sustain service. For this reason, degradation is gradual, not catastrophic: even destroying six satellites at once would only deny service to a localized area for about 95 minutes per day. If, however, one could disable most of the constellation, the result would be near-total loss of GPS services worldwide. While this is largely infeasible with current ASATs, by the late 2020s China may have enough RPO-capable small spacecraft to preposition near every GPS satellite, allowing at-will disablement of the entire constellation. These threats underscore the need to carefully examine each next-generation ASAT individually, in order to identify in advance any unique characteristics which might upend prior assumptions. Doing so is the only way to avoid strategic surprise, and would reveal which threats do (and don’t) deserve priority and how solutions should be designed.

Third, the forum would facilitate serious and open debate regarding what capabilities the U.S. should procure and field, and how to do so in time (likely but a few short years). Most counters to the rendezvous threat, for example, will likely require bodyguard spacecraft to implement. This is feasible: both the U.S. government (e.g. DARPA) and the private sector (e.g. Northrop Grumman) have demonstrated increasingly sophisticated RPO capabilities, including the ability to autonomously dock with a target in GEO and make such spacecraft far smaller and cheaper (e.g. via DARPA’s Blackjack program). Despite these advances, however, the U.S. has yet to develop spacecraft for active defense, much less deploy them, and its handful of RPO-capable spacecraft are 10 times as heavy — and, probably, costly — as those under development by Russia and China. The U.S. must quickly develop and deploy bodyguards comparable in quantity and cost to the potential rendezvous ASATs it faces, or it risks adversaries being able to overwhelm our defenses.

LASERS AND CYBERATTACKS

Nor is the need for such a forum limited to rendezvous spacecraft. Two other emergent ASAT threats reveal similar requirements and lack of preparation: ground-based lasers (GBLs) and cyberattacks. As U.S. intelligence agencies including the Defense Intelligence Agency have noted, GBLs will almost certainly become much more capable over the next decade, moving from dazzling or harming sensors to damaging external structures on satellites in LEO. This fundamentally changes the nature of the threat, and requires new solutions — yet, to date, there has been little discussion of such solutions.

Cybersecurity, too, requires swift action and innovative thinking. Many commercial and civilian space systems remain vulnerable. As the U.S. plans to continue increasing military integration with commercial systems, security standards must be improved. Additionally, there is little basis for confidence that military space systems, and particularly their ground segments, are truly cyber-secure now, or that they will remain so going forward.

At the same time, potential adversaries’ cyber capabilities and doctrine are advancing quickly. China’s rapid progress in emerging technology fields could also be a game-changer. One example is Chinese development of quantum communications satellite technology which, as evidenced by the launch of its Micius satellite in 2016, leads all other countries; the result could be that they can hack our space systems but hamstring U.S. response via quantum cryptography.

WHAT’S NEEDED TO KEEP PEACE

As these cases highlight, navigating the era of weaponized space will require a meeting of the minds. For this reason, the Biden administration should establish an institutional mechanism through which a range of ideas can be solicited, exchanged, and directly challenged and defended to filter the signal from the noise.

There is precedent for this. On his first day in office, President Obama signed the Memorandum on Open Government, which stated that “executive departments and agencies should offer Americans increased opportunities to participate in policymaking.” The ensuing Open Government Directive reaffirmed that “the three principles of transparency, participation, and collaboration form the cornerstone of an open government,” and led DOD to quickly establish its Open Government Plan (OGP).

The Biden administration should direct DoD to build on its OGP by adding an Initiative on Public Collaboration for Peace and Prosperity in Space. The first project should be a series of workshops in which relevant experts from the Pentagon and its partners (e.g., contractors and Federally Funded R&D Centers) collaborate with outside experts to assess, compare, and synthesize different proposals to counter specific, individual ASAT threats emerging in the 2020s and 2030s.

As a democracy, the U.S. naturally generates a diversity of ideas. We can either keep them in silos, as we do now, or we can exchange these ideas and subject them to rigorous cross-examination and potential cross-pollination. Standing now at the brink of a new era of weaponized space, our choice should be clear.


Brian Chow is an independent policy analyst with over 160 publications. He can be reached at [email protected] Brandon Kelley is the Director of Debate at Georgetown University, and a graduate student in the Security Studies Program. He can be reached at [email protected]

This article originally appeared in the July 2021 issue of SpaceNews magazine.


PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spacenews.com/op-ed-peace-in-the-era-of-weaponized-space/

Continue Reading

Aerospace

Live coverage: Atlas 5 rocket set to roll out to launch pad with Starliner capsule

Published

on

Live coverage of the unpiloted test flight of Boeing’s Starliner crew capsule on the Orbital Flight Test-2 mission. Text updates will appear automatically below. Follow us on Twitter.

Rollout Live Stream

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/28/atlas-5-oft-2-mission-status-center/

Continue Reading

Aerospace

Live coverage: Atlas 5 rocket set to roll out to launch pad with Starliner capsule

Published

on

Live coverage of the unpiloted test flight of Boeing’s Starliner crew capsule on the Orbital Flight Test-2 mission. Text updates will appear automatically below. Follow us on Twitter.

Rollout Live Stream

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/28/atlas-5-oft-2-mission-status-center/

Continue Reading
Esports4 days ago

Teppei Genshin Impact Voice Actor: Who is it?

Esports4 days ago

Who won Minecraft Championships (MCC) 15? | Final Standings and Scores

Esports4 days ago

All ranked mode rewards for Pokémon UNITE: Season 1

Aviation3 days ago

Legendary F-14 Pilot Dale ‘Snort’ Snodgrass Dies In A Tragic Plane Crash

Cleantech4 days ago

Form Energy Reveals Iron-Air 100 Hour Storage Battery

Esports4 days ago

Sakura Arborism Genshin Impact: How to Complete

Esports5 days ago

Here are the results for the PUBG Mobile World Invitational (PMWI) West 2021

watch-live-russias-pirs-module-set-to-depart-space-station-today.jpg
Aerospace2 days ago

Watch live: Russia’s Pirs module set to depart space station today

Esports5 days ago

Here are the results for the PUBG Mobile World Invitational (PMWI) East 2021

Techcrunch4 days ago

This Week in Apps: Clubhouse opens up, Twitter talks bitcoin, Snap sees record quarter

best-gengar-build-in-pokemon-unite.png
Esports4 days ago

Best Gengar build in Pokémon UNITE

Cyber Security5 days ago

Threat Actors are Abusing Argo Workflows to Target Kubernetes

Esports4 days ago

Are there ranked rewards in Pokémon UNITE?

Esports4 days ago

Best Garchomp build in Pokémon UNITE

Cyber Security5 days ago

What Programming Language Should I Learn for CyberSecurity?

Blockchain4 days ago

Canadian Border Town Halts Crypto Mining to Draw Up Regulations

Esports4 days ago

How to unlock Pokémon in Pokémon UNITE, all Unite License costs

AR/VR4 days ago

Warplanes: WW1 Fighters to See Official Oculus Quest Store Launch This Week

AI4 days ago

What is the Freedom Phone and Should You Buy It?

Crowdfunding4 days ago

Calgary, Alberta’s Allied Venture Partners Confirms they’ve Invested $1M+ into Early-Stage Tech Firms

Trending