Connect with us

Quantum

Tuning the electronic structure of monolayer graphene/MoS_{2} van der Waals heterostructures via interlayer twist

Avatar

Published

on

We directly measure the electronic structure of twisted graphene/

MoS2

van der Waals heterostructures, in which both graphene and

MoS2

are monolayers. We use cathode lens microscopy and microprobe angle-resolved photoemission spectroscopy measurements to image the surface, determine twist angle, and map the electronic structure of these artificial heterostructures. For monolayer graphene on monolayer

MoS2

, the resulting band structure reveals the absence of hybridization between the graphene and

MoS2

electronic states. Further, the graphene-derived electronic structure in the heterostructures remains essentially intact, irrespective of the twist angle between the two materials. In contrast, however, the electronic structure associated with the

MoS2

layer is found to be twist-angle dependent; in particular, the relative difference in the energy of the valence band maximum at

Γ¯

and

K¯

of the

MoS2

layer varies from approximately 0 to 0.2 eV. Our results suggest that monolayer

MoS2

within the heterostructure becomes predominantly an indirect band-gap system for all twist angles except in the proximity of

30

. This result enables potential band-gap engineering in van der Waals heterostructures comprised of monolayer structures.

  • Received 1 July 2015

DOI:https://doi.org/10.1103/PhysRevB.92.201409

©2015 American Physical Society

Source: http://link.aps.org/doi/10.1103/PhysRevB.92.201409

Quantum

Bell nonlocality with a single shot

Avatar

Published

on


Mateus Araújo1, Flavien Hirsch1, and Marco Túlio Quintino2,1,3

1Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
3Department of Physics, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In order to reject the local hidden variables hypothesis, the usefulness of a Bell inequality can be quantified by how small a $p$-value it will give for a physical experiment. Here we show that to obtain a small expected $p$-value it is sufficient to have a large gap between the local and Tsirelson bounds of the Bell inequality, when it is formulated as a nonlocal game. We develop an algorithm for transforming an arbitrary Bell inequality into an equivalent nonlocal game with the largest possible gap, and show its results for the CGLMP and $I_{nn22}$ inequalities.

We present explicit examples of Bell inequalities with gap arbitrarily close to one, and show that this makes it possible to reject local hidden variables with arbitrarily small $p$-value in a single shot, without needing to collect statistics. We also develop an algorithm for calculating local bounds of general Bell inequalities which is significantly faster than the naïve approach, which may be of independent interest.

Nonlocal games are cooperative games between two parties, Alice and Bob, that are not allowed to communicate. The maximal probability with which Alice and Bob can win the game depends on how the world fundamentally works: if it respects classical ideas about locality and determinism, this maximal probability is given by the local bound. On the other hand, if the world works according to quantum mechanics, the maximal probability is given by the Tsirelson bound, which is larger than the local bound. This makes it possible to experimentally falsify the classical worldview: let Alice and Bob play a nonlocal game with quantum devices for many rounds, and if they win more often than the local bound predicts, that’s it.

The number of rounds it takes for a decisive rejection of the classical worldview depends on the statistical power of the nonlocal game: a more powerful game requires fewer rounds to reach a conclusion with the same degree of confidence. We show that in order to get a large statistical power, it is enough to have a large gap between the local bound and the Tsirelson bound of the nonlocal game. Moreover, we show that this gap depends on how precisely a nonlocal game is formulated, so we develop an algorithm to maximise the gap over all possible formulations of a nonlocal game. With this, we derive the most powerful version of several well-known nonlocal games, such as the CHSH game, the CGLMP games, and the Inn22 games.

A natural question to ask is how high can the statistical power of a nonlocal game get. We show that it can get arbitrarily high, by constructing two nonlocal games with gap between their local and Tsirelson bounds arbitrarily close to one. This makes it possible to conclusively falsify the classical worldview with a single round of the nonlocal game, without needing to collect statistics. Unfortunately, neither of these games is experimentally feasible, so the question of whether a single-shot falsification is possible in practice is still open.

► BibTeX data

► References

[1] J. S. Bell “On the Einstein-Poldolsky-Rosen paradox” Physics 1, 195-200 (1964).
https:/​/​doi.org/​10.1103/​PhysicsPhysiqueFizika.1.195

[2] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, “Proposed experiment to test local hidden-variable theories” Physical Review Letters 23, 880–884 (1969).
https:/​/​doi.org/​10.1103/​PhysRevLett.23.880

[3] John S Bell “The theory of local beables” (1975).
https:/​/​cds.cern.ch/​record/​980036/​files/​197508125.pdf

[4] David Deutschand Patrick Hayden “Information flow in entangled quantum systems” Proceedings of the Royal Society A 456, 1759–1774 (2000).
https:/​/​doi.org/​10.1098/​rspa.2000.0585
arXiv:quant-ph/9906007

[5] Harvey R. Brownand Christopher G. Timpson “Bell on Bell’s theorem: The changing face of nonlocality” Cambridge University Press (2016).
https:/​/​doi.org/​10.1017/​CBO9781316219393.008
arXiv:1501.03521

[6] Alain Aspect, Jean Dalibard, and Gérard Roger, “Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers” Physical Review Letters 49, 1804–1807 (1982).
https:/​/​doi.org/​10.1103/​PhysRevLett.49.1804

[7] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger, “Violation of Bell’s Inequality under Strict Einstein Locality Conditions” Physical Review Letters 81, 5039–5043 (1998).
https:/​/​doi.org/​10.1103/​physrevlett.81.5039
arXiv:quant-ph/9810080

[8] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, “Experimental violation of a Bell’s inequality with efficient detection” Nature 409, 791–794 (2001).
https:/​/​doi.org/​10.1038/​35057215

[9] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres” Nature 526, 682–686 (2015).
https:/​/​doi.org/​10.1038/​nature15759
arXiv:1508.05949

[10] Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-à ke Larsson, Carlos Abellán, and al., “Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons” Physical Review Letters 115, 250401 (2015).
https:/​/​doi.org/​10.1103/​physrevlett.115.250401
arXiv:1511.03190

[11] Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, Peter Bierhorst, Michael A. Wayne, Martin J. Stevens, Thomas Gerrits, Scott Glancy, Deny R. Hamel, Michael S. Allman, and al., “Strong Loophole-Free Test of Local Realism” Physical Review Letters 115, 250402 (2015).
https:/​/​doi.org/​10.1103/​physrevlett.115.250402
arXiv:1511.03189

[12] Richard Cleve, Peter Høyer, Ben Toner, and John Watrous, “Consequences and Limits of Nonlocal Strategies” (2004).
arXiv:quant-ph/0404076

[13] Jonathan Barrett, Daniel Collins, Lucien Hardy, Adrian Kent, and Sandu Popescu, “Quantum nonlocality, Bell inequalities, and the memory loophole” Physical Review A 66, 042111 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.66.042111
arXiv:quant-ph/0205016

[14] Richard D. Gilland Jan-Åke Larsson “Accardi Contra Bell (Cum Mundi): The Impossible Coupling” Lecture Notes-Monograph Series 42, 133–154 (2003).
arXiv:quant-ph/0110137

[15] Anup Rao “Parallel repetition in projection games and a concentration bound” SIAM Journal on Computing 40, 1871–1891 (2011).
https:/​/​doi.org/​10.1137/​080734042

[16] Julia Kempe, Oded Regev, and Ben Toner, “Unique Games with Entangled Provers are Easy” (2007).
arXiv:0710.0655

[17] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, and M. M. Wolf, “Unbounded Violations of Bipartite Bell Inequalities via Operator Space Theory” Communications in Mathematical Physics 300, 715–739 (2010).
https:/​/​doi.org/​10.1007/​s00220-010-1125-5
arXiv:0910.4228

[18] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, and M. M. Wolf, “Operator Space Theory: A Natural Framework for Bell Inequalities” Physical Review Letters 104, 170405 (2010).
https:/​/​doi.org/​10.1103/​physrevlett.104.170405
arXiv:0912.1941

[19] B. S. Cirel’son “Quantum generalizations of Bell’s inequality” Letters in Mathematical Physics 4, 93–100 (1980).
https:/​/​doi.org/​10.1007/​BF00417500

[20] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality” Reviews of Modern Physics 86, 419–478 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.419
arXiv:1303.2849

[21] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson, “Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions” Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing 113–131 (1988).
https:/​/​doi.org/​10.1145/​62212.62223

[22] Boris Tsirelson “Quantum information processing – Lecture notes” (1997).
https:/​/​www.webcitation.org/​5fl2WZOMI

[23] Harry Buhrman, Oded Regev, Giannicola Scarpa, and Ronald de Wolf, “Near-Optimal and Explicit Bell Inequality Violations” 2011 IEEE 26th Annual Conference on Computational Complexity (2011).
https:/​/​doi.org/​10.1109/​ccc.2011.30
arXiv:1012.5043

[24] Carlos Palazuelosand Thomas Vidick “Survey on nonlocal games and operator space theory” Journal of Mathematical Physics 57, 015220 (2016).
https:/​/​doi.org/​10.1063/​1.4938052
arXiv:1512.00419

[25] Marcel Froissart “Constructive generalization of Bell’s inequalities” Il Nuovo Cimento B (1971-1996) 64, 241–251 (1981).
https:/​/​doi.org/​10.1007/​BF02903286

[26] Yanbao Zhang, Scott Glancy, and Emanuel Knill, “Asymptotically optimal data analysis for rejecting local realism” Physical Review A 84, 062118 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.062118
arXiv:1108.2468

[27] David Elkoussand Stephanie Wehner “(Nearly) optimal P-values for all Bell inequalities” npj Quantum Information 2 (2016).
https:/​/​doi.org/​10.1038/​npjqi.2016.26
arXiv:1510.07233

[28] Richard D. Gill “Time, Finite Statistics, and Bell’s Fifth Position” (2003).
arXiv:quant-ph/0301059

[29] Yanbao Zhang, Scott Glancy, and Emanuel Knill, “Efficient quantification of experimental evidence against local realism” Physical Review A 88, 052119 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.052119
arXiv:1303.7464

[30] Peter Bierhorst “A Rigorous Analysis of the Clauser–Horne–Shimony–Holt Inequality Experiment When Trials Need Not be Independent” Foundations of Physics 44, 736–761 (2014).
https:/​/​doi.org/​10.1007/​s10701-014-9811-3
arXiv:1311.3605

[31] Denis Rosset, Jean-Daniel Bancal, and Nicolas Gisin, “Classifying 50 years of Bell inequalities” Journal of Physics A Mathematical General 47, 424022 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424022
arXiv:1404.1306

[32] M. O. Renou, D. Rosset, A. Martin, and N. Gisin, “On the inequivalence of the CH and CHSH inequalities due to finite statistics” Journal of Physics A Mathematical General 50, 255301 (2017).
https:/​/​doi.org/​10.1088/​1751-8121/​aa6f78
arXiv:1610.01833

[33] Steven Diamondand Stephen Boyd “CVXPY: A Python-embedded modeling language for convex optimization” Journal of Machine Learning Research 17, 1–5 (2016).
arXiv:1603.00943

[34] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd, “A rewriting system for convex optimization problems” Journal of Control and Decision 5, 42–60 (2018).
https:/​/​doi.org/​10.1080/​23307706.2017.1397554
arXiv:1709.04494

[35] Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar, and Sandu Popescu, “Bell Inequalities for Arbitrarily High-Dimensional Systems” Physical Review Letters 88, 040404 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.88.040404
arXiv:quant-ph/0106024

[36] Antonio Acín, Richard Gill, and Nicolas Gisin, “Optimal Bell Tests Do Not Require Maximally Entangled States” Physical Review Letters 95, 210402 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.210402
arXiv:quant-ph/0506225

[37] Stefan Zohrenand Richard D. Gill “Maximal Violation of the CGLMP Inequality for Infinite Dimensional States” Physical Review Letters 100 (2008).
https:/​/​doi.org/​10.1103/​physrevlett.100.120406
arXiv:quant-ph/0612020

[38] A. Acín, T. Durt, N. Gisin, and J. I. Latorre, “Quantum nonlocality in two three-level systems” Physical Review A 65 (2002).
https:/​/​doi.org/​10.1103/​physreva.65.052325
arXiv:quant-ph/0111143

[39] Miguel Navascués, Stefano Pironio, and Antonio Acín, “Bounding the Set of Quantum Correlations” Physical Review Letters 98 (2007).
https:/​/​doi.org/​10.1103/​physrevlett.98.010401
arXiv:quant-ph/0607119

[40] S. Zohren, P. Reska, R. D. Gill, and W. Westra, “A tight Tsirelson inequality for infinitely many outcomes” EPL (Europhysics Letters) 90, 10002 (2010).
https:/​/​doi.org/​10.1209/​0295-5075/​90/​10002
arXiv:1003.0616

[41] Daniel Collinsand Nicolas Gisin “A relevant two qubit Bell inequality inequivalent to the CHSH inequality” Journal of Physics A Mathematical General 37, 1775–1787 (2004).
https:/​/​doi.org/​10.1088/​0305-4470/​37/​5/​021
arXiv:quant-ph/0306129

[42] David Avisand Tsuyoshi Ito “New classes of facets of the cut polytope and tightness of $I_{mm22}$ Bell inequalities” Discrete Applied Mathematics 155, 1689 –1699 (2007).
https:/​/​doi.org/​10.1016/​j.dam.2007.03.005
arXiv:math/0505143

[43] Károly F. Páland Tamás Vértesi “Maximal violation of the I3322 inequality using infinite-dimensional quantum systems” Physical Review A 82 (2010).
https:/​/​doi.org/​10.1103/​physreva.82.022116
arXiv:1006.3032

[44] Péter Diviánszky, Erika Bene, and Tamás Vértesi, “Qutrit witness from the Grothendieck constant of order four” Physical Review A 96, 012113 (2017).
https:/​/​doi.org/​10.1103/​physreva.96.012113
arXiv:1707.04719

[45] Lance Fortnow “Complexity-theoretic aspects of interactive proof systems” thesis (1989).
http:/​/​people.cs.uchicago.edu/​~fortnow/​papers/​thesis.pdf

[46] Uriel Feigeand László Lovász “Two-Prover One-Round Proof Systems: Their Power and Their Problems (Extended Abstract)” Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing 733–744 (1992).
https:/​/​doi.org/​10.1145/​129712.129783

[47] Gilles Brassard, Anne Broadbent, and Alain Tapp, “Quantum Pseudo-Telepathy” Foundations of Physics 35, 1877–1907 (2005).
https:/​/​doi.org/​10.1007/​s10701-005-7353-4
arXiv:quant-ph/0407221

[48] P. K. Aravind “A simple demonstration of Bell’s theorem involving two observers and no probabilities or inequalities” American Journal of Physics 72, 1303 (2004).
https:/​/​doi.org/​10.1119/​1.1773173
arXiv:quant-ph/0206070

[49] Ran Raz “A Parallel Repetition Theorem” SIAM Journal on Computing 27, 763–803 (1998).
https:/​/​doi.org/​10.1137/​S0097539795280895

[50] Thomas Holenstein “Parallel repetition: simplifications and the no-signaling case” Theory of Computing 141–172 (2009).
https:/​/​doi.org/​10.4086/​toc.2009.v005a008
arXiv:cs/0607139

[51] S. A. Khotand N. K. Vishnoi “The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into $ell_1$” 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 53–62 (2005).
https:/​/​doi.org/​10.1109/​SFCS.2005.74
arXiv:1305.4581

[52] Carlos Palazuelos “Superactivation of Quantum Nonlocality” Physical Review Letters 109, 190401 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.190401
arXiv:1205.3118

[53] Mafalda L. Almeida, Stefano Pironio, Jonathan Barrett, Géza Tóth, and Antonio Acín, “Noise Robustness of the Nonlocality of Entangled Quantum States” Physical Review Letters 99, 040403 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.99.040403
arXiv:quant-ph/0703018

[54] Carlos Palazuelos “On the largest Bell violation attainable by a quantum state” Journal of Functional Analysis 267, 1959–1985 (2014).
https:/​/​doi.org/​10.1016/​j.jfa.2014.07.028
arXiv:1206.3695

[55] Boris Tsirelson “Quantum analogues of the Bell inequalities. The case of two spatially separated domains” Journal of Soviet Mathematics 36, 557–570 (1987).
https:/​/​doi.org/​10.1007/​BF01663472

[56] Antonio Acín, Nicolas Gisin, and Benjamin Toner, “Grothendieck’s constant and local models for noisy entangled quantum states” Physical Review A 73, 062105 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.73.062105
arXiv:quant-ph/0606138

[57] Flavien Hirsch, Marco Túlio Quintino, Tamás Vértesi, Miguel Navascués, and Nicolas Brunner, “Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant $K_G(3)$” Quantum 1, 3 (2017).
https:/​/​doi.org/​10.22331/​q-2017-04-25-3
arXiv:1609.06114

[58] Yeong-Cherng Liang, Chu-Wee Lim, and Dong-Ling Deng, “Reexamination of a multisetting Bell inequality for qudits” Physical Review A 80 (2009).
https:/​/​doi.org/​10.1103/​physreva.80.052116
arXiv:0903.4964

[59] Stephen Brierley, Miguel Navascués, and Tamas Vértesi, “Convex separation from convex optimization for large-scale problems” (2016).
arXiv:1609.05011

[60] H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox” Physical Review Letters 98, 140402 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.140402
arXiv:quant-ph/0612147

[61] Marco Túlio Quintino, Tamás Vértesi, Daniel Cavalcanti, Remigiusz Augusiak, Maciej Demianowicz, Antonio Acín, and Nicolas Brunner, “Inequivalence of entanglement, steering, and Bell nonlocality for general measurements” Physical Review A 92, 032107 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.032107
arXiv:1501.03332

[62] L. Gurvitsand H. Barnum “Largest separable balls around the maximally mixed bipartite quantum state” Physical Review A 66, 062311 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.66.062311
arXiv:quant-ph/0204159

[63] Stephen Boydand Lieven Vandenberghe “Convex Optimization” Cambridge University Press (2004).
http:/​/​www.stanford.edu/​~boyd/​cvxbook/​

Cited by

Could not fetch Crossref cited-by data during last attempt 2020-10-28 12:01:59: Could not fetch cited-by data for 10.22331/q-2020-10-28-353 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2020-10-28 12:01:59).

Source: https://quantum-journal.org/papers/q-2020-10-28-353/

Continue Reading

Quantum

Optimization of the surface code design for Majorana-based qubits

Avatar

Published

on


Rui Chao1, Michael E. Beverland2, Nicolas Delfosse2, and Jeongwan Haah2

1University of Southern California, Los Angeles, CA, USA
2Microsoft Quantum and Microsoft Research, Redmond, WA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The surface code is a prominent topological error-correcting code exhibiting high fault-tolerance accuracy thresholds. Conventional schemes for error correction with the surface code place qubits on a planar grid and assume native CNOT gates between the data qubits with nearest-neighbor ancilla qubits.

Here, we present surface code error-correction schemes using $textit{only}$ Pauli measurements on single qubits and on pairs of nearest-neighbor qubits. In particular, we provide several qubit layouts that offer favorable trade-offs between qubit overhead, circuit depth and connectivity degree. We also develop minimized measurement sequences for syndrome extraction, enabling reduced logical error rates and improved fault-tolerance thresholds.

Our work applies to topologically protected qubits realized with Majorana zero modes and to similar systems in which multi-qubit Pauli measurements rather than CNOT gates are the native operations.

► BibTeX data

► References

[1] A. Y. Kitaev, Ann. Phys. 303, 2 (2003), quant-ph/​9707021.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0
arXiv:quant-ph/9707021

[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002), quant-ph/​0110143.
https:/​/​doi.org/​10.1063/​1.1499754
arXiv:quant-ph/0110143

[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012), 1208.0928.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[4] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007), quant-ph/​0610082.
https:/​/​doi.org/​10.1103/​PhysRevLett.98.190504
arXiv:quant-ph/0610082

[5] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev. A 80, 052312 (2009), 0803.0272.
https:/​/​doi.org/​10.1103/​PhysRevA.80.052312
arXiv:0803.0272

[6] N. Delfosse and G. Zémor, Physical Review Research 2, 033042 (2020), 1703.01517.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033042
arXiv:1703.01517

[7] N. Delfosse and N. H. Nickerson, 2017, 1709.06218.
arXiv:1709.06218

[8] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305 (2017), 1610.05289.
https:/​/​doi.org/​10.1103/​PhysRevB.95.235305
arXiv:1610.05289

[9] C. Knapp, M. Beverland, D. I. Pikulin, and T. Karzig, Quantum 2, 88 (2018), 1806.01275.
https:/​/​doi.org/​10.22331/​q-2018-09-03-88
arXiv:1806.01275

[10] Y. Li, Physical Review Letters 117, 120403 (2016), 1512.05089.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.120403
arXiv:1512.05089

[11] S. Plugge, L. Landau, E. Sela, A. Altland, K. Flensberg, and R. Egger, Phys. Rev. B 94, 174514 (2016), 1606.08408.
https:/​/​doi.org/​10.1103/​PhysRevB.94.174514
arXiv:1606.08408

[12] D. Litinski, M. S. Kesselring, J. Eisert, and F. von Oppen, Phys. Rev. X 7, 031048 (2017), 1704.01589.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031048
arXiv:1704.01589

[13] A. G. Fowler, D. S. Wang, and L. C. L. Hollenberg, Quant. Info. Comput. 11, 8 (2011), 1004.0255.
https:/​/​doi.org/​10.26421/​QIC11.1-2
arXiv:1004.0255

[14] M. Newman, L. A. de Castro, and K. R. Brown, Quantum 4, 295 (2020), 1909.11817.
https:/​/​doi.org/​10.22331/​q-2020-07-13-295
arXiv:1909.11817

[15] A. G. Fowler, 2013, 1310.0863.
arXiv:1310.0863

[16] N. Delfosse and J.-P. Tillich, in 2014 IEEE Int. Symp. Info. (IEEE, 2014) pp. 1071–1075, 1401.6975.
https:/​/​doi.org/​10.1109/​ISIT.2014.6874997
arXiv:1401.6975

[17] S. Huang and K. R. Brown, Phys. Rev. A 101, 042312 (2020), 1911.11317.
https:/​/​doi.org/​10.1103/​PhysRevA.101.042312
arXiv:1911.11317

[18] S. Huang, M. Newman, and K. R. Brown, Phys. Rev. A 102, 012419 (2020), 2004.04693.
https:/​/​doi.org/​10.1103/​PhysRevA.102.012419
arXiv:2004.04693

[19] J. MacWilliams, Bell Syst. Tech. J. 42, 79 (1963).
https:/​/​doi.org/​10.1002/​j.1538-7305.1963.tb04003.x

[20] S. Bravyi and A. Vargo, Phys. Rev. A 88, 062308 (2013), 1308.6270.
https:/​/​doi.org/​10.1103/​PhysRevA.88.062308
arXiv:1308.6270

Cited by

Could not fetch Crossref cited-by data during last attempt 2020-10-28 11:03:33: Could not fetch cited-by data for 10.22331/q-2020-10-28-352 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2020-10-28 11:03:33).

Source: https://quantum-journal.org/papers/q-2020-10-28-352/

Continue Reading

Quantum

Classical Simulations of Quantum Field Theory in Curved Spacetime I: Fermionic Hawking-Hartle Vacua from a Staggered Lattice Scheme

Avatar

Published

on

Adam G. M. Lewis1 and Guifré Vidal1,2

1Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario, Canada, N2L 2Y5
2X, The Moonshot Factory, Mountain View, CA 94043

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We numerically compute renormalized expectation values of quadratic operators in a quantum field theory (QFT) of free Dirac fermions in curved two-dimensional (Lorentzian) spacetime. First, we use a staggered-fermion discretization to generate a sequence of lattice theories yielding the desired QFT in the continuum limit. Numerically-computed lattice correlators are then used to approximate, through extrapolation, those in the continuum. Finally, we use so-called point-splitting regularization and Hadamard renormalization to remove divergences, and thus obtain finite, renormalized expectation values of quadratic operators in the continuum. As illustrative applications, we show how to recover the Unruh effect in flat spacetime and how to compute renormalized expectation values in the Hawking-Hartle vacuum of a Schwarzschild black hole and in the Bunch-Davies vacuum of an expanding universe described by de Sitter spacetime. Although here we address a non-interacting QFT using free fermion techniques, the framework described in this paper lays the groundwork for a series of subsequent studies involving simulation of interacting QFTs in curved spacetime by tensor network techniques.

► BibTeX data

► References

[1] Radiation damping in a gravitational field. Annals of Physics, 9 (2): 220 – 259, 1960. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​0003-4916(60)90030-0.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0003-4916(60)90030-0

[2] Andreas Albrecht and Paul J. Steinhardt. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 48: 1220–1223, Apr 1982. 10.1103/​PhysRevLett.48.1220.
https:/​/​doi.org/​10.1103/​PhysRevLett.48.1220

[3] Miguel Alcubierre. Introduction to 3+1 Numerical Relativity. 10.1093/​acprof:oso/​9780199205677.001.0001.
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199205677.001.0001

[4] Bruce Allen. Vacuum states in de Sitter space. Phys. Rev. D, 32: 3136–3149, Dec 1985. 10.1103/​PhysRevD.32.3136.
https:/​/​doi.org/​10.1103/​PhysRevD.32.3136

[5] Victor E. Ambruș and Elizabeth Winstanley. Renormalised fermion vacuum expectation values on anti-de Sitter space–time. Physics Letters B, 749: 597 – 602, 2015. ISSN 0370-2693. https:/​/​doi.org/​10.1016/​j.physletb.2015.08.045.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.physletb.2015.08.045

[6] Richard Arnowitt, Stanley Deser, and Charles W. Misner. Republication of: The dynamics of general relativity. Gen. Relativ. Gravit., 40, 2008. 10.1007/​s10714-008-0661-1.
https:/​/​doi.org/​10.1007/​s10714-008-0661-1

[7] T. Banks, Leonard Susskind, and John Kogut. Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises. Phys. Rev. D, 13: 1043–1053, Feb 1976. 10.1103/​PhysRevD.13.1043.
https:/​/​doi.org/​10.1103/​PhysRevD.13.1043

[8] T.W. Baumgarte and S.L. Shapiro. Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge University Press, 2010. ISBN 9780521514071. 10.1017/​CBO9781139193344.
https:/​/​doi.org/​10.1017/​CBO9781139193344

[9] N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge University Press, Cambridge, 1982. 10.1017/​CBO9780511622632.
https:/​/​doi.org/​10.1017/​CBO9780511622632

[10] Elliot Blommaert. Hamiltonian simulation of free lattice fermions in curved spacetime. Master’s thesis, Ghent University, 2019.

[11] T. S. Bunch and P. C. W. Davies. Covariant point-splitting regularization for a scalar quantum field in a Robertson-Walker Universe with spatial curvature. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 357 (1690): 381–394, 1977. 10.1098/​rspa.1977.0174.
https:/​/​doi.org/​10.1098/​rspa.1977.0174

[12] Curtis G. Callan, Steven B. Giddings, Jeffrey A. Harvey, and Andrew Strominger. Evanescent black holes. Phys. Rev. D, 45: R1005–R1009, Feb 1992. 10.1103/​PhysRevD.45.R1005.
https:/​/​doi.org/​10.1103/​PhysRevD.45.R1005

[13] Sean M. Carroll. Spacetime and geometry: An introduction to general relativity. 2004. ISBN 0805387323, 9780805387322. 10.1017/​9781108770385.
https:/​/​doi.org/​10.1017/​9781108770385

[14] N. A. Chernikov and E. A. Tagirov. Quantum theory of scalar fields in de Sitter space-time. Annales de l’I.H.P. Physique théorique, 9 (2): 109–141, 1968. URL http:/​/​www.numdam.org/​item/​AIHPA_1968__9_2_109_0.
http:/​/​www.numdam.org/​item/​AIHPA_1968__9_2_109_0

[15] S. M. Christensen. Vacuum expectation value of the stress tensor in an arbitrary curved background: The covariant point-separation method. Phys. Rev. D, 14: 2490–2501, November 1976. 10.1103/​PhysRevD.14.2490.
https:/​/​doi.org/​10.1103/​PhysRevD.14.2490

[16] S. M. Christensen. Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D, 17: 946–963, February 1978. 10.1103/​PhysRevD.17.946.
https:/​/​doi.org/​10.1103/​PhysRevD.17.946

[17] A J Daley, C Kollath, U Schollwöck, and G Vidal. Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. Journal of Statistical Mechanics: Theory and Experiment, 2004 (04): P04005, apr 2004. 10.1088/​1742-5468/​2004/​04/​p04005.
https:/​/​doi.org/​10.1088/​1742-5468/​2004/​04/​p04005

[18] Ashmita Das, Surojit Dalui, Chandramouli Chowdhury, and Bibhas Ranjan Majhi. Conformal vacuum and the fluctuation-dissipation theorem in a de Sitter universe and black hole spacetimes. Phys. Rev. D, 100: 085002, Oct 2019. 10.1103/​PhysRevD.100.085002.
https:/​/​doi.org/​10.1103/​PhysRevD.100.085002

[19] Yves Décanini and Antoine Folacci. Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension. Phys. Rev. D., 78 (4): 044025, 2008. ISSN 1550-7998. 10.1103/​physrevd.78.044025.
https:/​/​doi.org/​10.1103/​physrevd.78.044025

[20] Daniel Z. Freedman and Antoine Van Proeyen. Supergravity. Cambridge University Press, New York, 2012. 10.1017/​CBO9781139026833.
https:/​/​doi.org/​10.1017/​CBO9781139026833

[21] G. W. Gibbons and S. W. Hawking. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 15: 2738–2751, May 1977. 10.1103/​PhysRevD.15.2738.
https:/​/​doi.org/​10.1103/​PhysRevD.15.2738

[22] G. W. Gibbons and M. J. Perry. Black holes in thermal equilibrium. Phys. Rev. Lett., 36: 985–987, Apr 1976. 10.1103/​PhysRevLett.36.985.
https:/​/​doi.org/​10.1103/​PhysRevLett.36.985

[23] Brian R Greene, Maulik K Parikh, and Jan Pieter van der Schaar. Universal correction to the inflationary vacuum. Journal of High Energy Physics, 2006 (04): 057–057, apr 2006. 10.1088/​1126-6708/​2006/​04/​057.
https:/​/​doi.org/​10.1088/​1126-6708/​2006/​04/​057

[24] Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23: 347–356, Jan 1981. 10.1103/​PhysRevD.23.347.
https:/​/​doi.org/​10.1103/​PhysRevD.23.347

[25] Jacques Hadamard. Lectures on Cauchy’s problem in linear partial differential equations. New Haven Yale University Press, 1923.

[26] J. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radiance. Phys. Rev. D, 13: 2188–2203, Apr 1976. 10.1103/​PhysRevD.13.2188.
https:/​/​doi.org/​10.1103/​PhysRevD.13.2188

[27] S. W. Hawking. Black hole explosions? Nature, 248: 379–423. 10.1038/​248030a0.
https:/​/​doi.org/​10.1038/​248030a0

[28] W. Israel. Thermo-field dynamics of black holes. Physics Letters A, 57 (2): 107 – 110, 1976. ISSN 0375-9601. https:/​/​doi.org/​10.1016/​0375-9601(76)90178-X.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0375-9601(76)90178-X

[29] Ted Jacobson. Note on Hartle-Hawking vacua. Phys. Rev. D, 50: R6031–R6032, Nov 1994. 10.1103/​PhysRevD.50.R6031.
https:/​/​doi.org/​10.1103/​PhysRevD.50.R6031

[30] P. Jordan and E. Wigner. Über das Paulische äquivalenzverbot. Zeitschrift fur Physik, 47: 631–651, 1928. 10.1007/​BF01331938.
https:/​/​doi.org/​10.1007/​BF01331938

[31] Bernard S. Kay and Robert M. Wald. Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Physics Reports, 207 (2): 49 – 136, 1991. ISSN 0370-1573. https:/​/​doi.org/​10.1016/​0370-1573(91)90015-E.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0370-1573(91)90015-E

[32] John Kogut and Leonard Susskind. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 11: 395–408, Jan 1975. 10.1103/​PhysRevD.11.395.
https:/​/​doi.org/​10.1103/​PhysRevD.11.395

[33] R. Laflamme. Geometry and thermofields. Nuclear Physics B, 324 (1): 233 – 252, 1989. ISSN 0550-3213. https:/​/​doi.org/​10.1016/​0550-3213(89)90191-0.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0550-3213(89)90191-0

[34] Adam G. M. Lewis. Hadamard renormalization of a two-dimensional dirac field. Phys. Rev. D, 101: 125019, Jun 2020. 10.1103/​PhysRevD.101.125019.
https:/​/​doi.org/​10.1103/​PhysRevD.101.125019

[35] Adam G.M. Lewis and Guifré Vidal. Matrix product state simulations of quantum fields in curved spacetime.

[36] A.D. Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108 (6): 389 – 393, 1982. ISSN 0370-2693. https:/​/​doi.org/​10.1016/​0370-2693(82)91219-9.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​0370-2693(82)91219-9

[37] Fannes M., Nachtergaele B., and R.F Werner. Finitely correlated states on quantum spin chains. Comm. Math. Phys., 144: 443490, 1992. 10.1007/​BF02099178.
https:/​/​doi.org/​10.1007/​BF02099178

[38] V. Moretti. Comments on the stress-energy operator in curved spacetime. Commun. Math. Phys., 232 (2): 189–221. 10.1007/​s00220-002-0702-7.
https:/​/​doi.org/​10.1007/​s00220-002-0702-7

[39] A.-H. Najmi and A. C. Ottewill. Quantum states and the Hadamard form. II. Energy minimization for spin- 1/​2 fields. Phys. Rev. D., 30: 2573–2578, December 1984. 10.1103/​PhysRevD.30.2573.
https:/​/​doi.org/​10.1103/​PhysRevD.30.2573

[40] Stellan Östlund and Stefan Rommer. Thermodynamic limit of density matrix renormalization. Phys. Rev. Lett., 75: 3537–3540, Nov 1995. 10.1103/​PhysRevLett.75.3537.
https:/​/​doi.org/​10.1103/​PhysRevLett.75.3537

[41] Leonard Parker and David Toms. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge University Press, Cambridge, 2009. 10.1017/​CBO9780511813924.
https:/​/​doi.org/​10.1017/​CBO9780511813924

[42] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac. Matrix product state representations. Quantum Info. Comput., 7 (5): 401–430, July 2007. ISSN 1533-7146. URL http:/​/​dl.acm.org/​citation.cfm?id=2011832.2011833.
http:/​/​dl.acm.org/​citation.cfm?id=2011832.2011833

[43] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview Press, Boulder, Colarado, 1995. 10.1201/​9780429503559.
https:/​/​doi.org/​10.1201/​9780429503559

[44] Eric Poisson, Adam Pound, and Ian Vega. The motion of point particles in curved spacetime. Living Reviews in Relativity, 14 (1): 7, Sep 2011. ISSN 1433-8351. 10.12942/​lrr-2011-7.
https:/​/​doi.org/​10.12942/​lrr-2011-7

[45] Frans Pretorius. Evolution of binary black-hole spacetimes. Phys. Rev. Lett., 95 (12): 121101, 2005a. 10.1103/​PhysRevLett.95.121101.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.121101

[46] Frans Pretorius. Numerical relativity using a generalized harmonic decomposition. Class. Quant. Grav., 22 (2): 425, 2005b. 10.1088/​0264-9381/​22/​2/​014.
https:/​/​doi.org/​10.1088/​0264-9381/​22/​2/​014

[47] Stefan Rommer and Stellan Östlund. Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group. Phys. Rev. B, 55: 2164–2181, Jan 1997. 10.1103/​PhysRevB.55.2164.
https:/​/​doi.org/​10.1103/​PhysRevB.55.2164

[48] Katsuhiko Sato. First-order phase transition of a vacuum and the expansion of the Universe. Monthly Notices of the Royal Astronomical Society, 195 (3): 467–479, 07 1981. ISSN 0035-8711. 10.1093/​mnras/​195.3.467.
https:/​/​doi.org/​10.1093/​mnras/​195.3.467

[49] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77: 259–315, Apr 2005. 10.1103/​RevModPhys.77.259.
https:/​/​doi.org/​10.1103/​RevModPhys.77.259

[50] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326 (1): 96 – 192, 2011. ISSN 0003-4916. https:/​/​doi.org/​10.1016/​j.aop.2010.09.012. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491610001752. January 2011 Special Issue.
https:/​/​doi.org/​https:/​/​doi.org/​10.1016/​j.aop.2010.09.012
http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0003491610001752

[51] Leonard Susskind. Lattice fermions. Phys. Rev. D, 16 (10): 3031–3039, 1976. ISSN 1550-7998. 10.1103/​physrevd.16.3031.
https:/​/​doi.org/​10.1103/​physrevd.16.3031

[52] W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14: 870–892, Aug 1976. 10.1103/​PhysRevD.14.870.
https:/​/​doi.org/​10.1103/​PhysRevD.14.870

[53] William G. Unruh and Nathan Weiss. Acceleration radiation in interacting field theories. Phys. Rev. D, 29: 1656–1662, Apr 1984. 10.1103/​PhysRevD.29.1656.
https:/​/​doi.org/​10.1103/​PhysRevD.29.1656

[54] Guifré Vidal. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett., 91 (14): 147902, 2003. ISSN 0031-9007. 10.1103/​physrevlett.91.147902.
https:/​/​doi.org/​10.1103/​physrevlett.91.147902

[55] Guifré Vidal. Efficient simulation of One-Dimensional quantum Many-Body systems. Phys. Rev. Lett., 93 (4): 040502, 2004. ISSN 0031-9007. 10.1103/​physrevlett.93.040502.
https:/​/​doi.org/​10.1103/​physrevlett.93.040502

[56] Robert M Wald. General Relativity. University of Chicago Press, 1984. ISBN 9780226870328. 10.7208/​chicago/​9780226870373.001.0001.
https:/​/​doi.org/​10.7208/​chicago/​9780226870373.001.0001

[57] Robert M Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago, 1994.

[58] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69: 2863–2866, Nov 1992. 10.1103/​PhysRevLett.69.2863.
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2863

[59] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B, 48: 10345–10356, Oct 1993. 10.1103/​PhysRevB.48.10345. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.48.10345.
https:/​/​doi.org/​10.1103/​PhysRevB.48.10345

[60] Steven R. White and Adrian E. Feiguin. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett., 93: 076401, Aug 2004. 10.1103/​PhysRevLett.93.076401.
https:/​/​doi.org/​10.1103/​PhysRevLett.93.076401

[61] Run-Qiu Yang, Hui Liu, Shining Zhu, Le Luo, and Rong-Gen Cai. Simulating quantum field theory in curved spacetime with quantum many-body systems. Phys. Rev. Research, 2: 023107, Apr 2020. 10.1103/​PhysRevResearch.2.023107.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023107

Cited by

[1] Adam G. M. Lewis, “Hadamard renormalization of a two-dimensional Dirac field”, Physical Review D 101 12, 125019 (2020).

[2] Yue-Zhou Li and Junyu Liu, “On Quantum Simulation Of Cosmic Inflation”, arXiv:2009.10921.

The above citations are from SAO/NASA ADS (last updated successfully 2020-10-28 10:51:27). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2020-10-28 10:51:25: Could not fetch cited-by data for 10.22331/q-2020-10-28-351 from Crossref. This is normal if the DOI was registered recently.

Source: https://quantum-journal.org/papers/q-2020-10-28-351/

Continue Reading
Blockchain News3 hours ago

Chinese President Xi Jinping: Participate in Making Digital Currency and Digital Tax’s International Rule Actively

Energy4 hours ago

1 p.m. Update: Georgia Power working to restore remaining 68,000 customers after Hurricane Zeta

Blockchain News4 hours ago

South Korean Hospitals to Usher in New Healthcare Era Using Blockchain Technology, AI and Big Data

Code4 hours ago

[AWS Certified Developer] – Associate Practice Test Exam

AR/VR5 hours ago

VR Animation Baba Yaga Exclusive to Oculus Quest in 2021

Blockchain6 hours ago

Bitcoin-Themed NFT Card Set Launches On Anniversary Of Satoshi’s White Paper

Blockchain News7 hours ago

Verizon’s New Blockchain Verification Tool ‘Full Transparency’ Combats Fake News

Energy8 hours ago

9 a.m. Update: Georgia Power working to restore remaining 78,000 customers after Hurricane Zeta

Energy8 hours ago

E-Bikes Catch on Outside China, Boosting Global Market Growth Through 2024

Blockchain News8 hours ago

Chinese City Eyes Blockchain Applications for Urban Governance and Smart Education

Cyber Security8 hours ago

USCYBERCOM Released New Malware Samples

Blockchain News8 hours ago

The Bank of Russia Says CBDC Will Eliminate Challenges Caused by Cryptocurrencies

Cyber Security13 hours ago

The WordPress Core Team has Released an Emergency Release of WordPress 5.5.3

Blockchain1 day ago

TRAMS DEX Propels Global Adoption of DeFi with Automated Market Maker (AMM) protocol

AI1 day ago

AI Contact Tracer Awarded at UNLV

Press Releases1 day ago

Bixin Ventures Announces $100M Proprietary Capital Fund to Support Global Blockchain Ecosystem

Press Releases1 day ago

SHANGHAI, Oct 26, 2020 – (ACN Newswire)

Start Ups1 day ago

CB Insights: Trends, Insights & Startups from The Fintech 250

Press Releases1 day ago

Valarhash Launches New Service Series for its Mining Hosting Operations

zephyrnet1 day ago

Trends, Insights & Startups from The Fintech 250

AR/VR1 day ago

The VR Game Launch Roundup: Time to Grapple With Zombies & Interior Design

Cyber Security1 day ago

Hackers Continue to Target Zerologon Vulnerability

AR/VR1 day ago

Oculus Quest 2 Sales Surpass Facebook Expectations, Pre-orders 5x More Than Original Quest

Crowdfunding1 day ago

Warning: This Is Cyber Criminals’ New Method of Attack

Cannabis1 day ago

Current Research on Effect Specific Uses of Cannabis

Crowdfunding1 day ago

Friday Charts: I Double Dare You To Ignore This Trend

AR/VR1 day ago

Five Nights at Freddy’s AR: Special Delivery Update Expands Phone Compatibility, Adds New Modes

AR/VR1 day ago

Hybrid Tower Defence/FPS Cyberspace VR Launches Kickstarter

Covid191 day ago

How Telemedicine Can Help Keep Your Health on Track

Start Ups1 day ago

Website Packages – Good or Evil?

Blockchain1 day ago

Self-Sovereign Decentralized Digital Identity

Cyber Security2 days ago

Best Moon Lamp Reviews and Buying Guide

Cyber Security2 days ago

Guilford Technical Community College Continues to Investigate a Ransomware Cyberattack

Cyber Security2 days ago

IOTW: Will There Be An Incident Of Impact On Tuesday’s Election?

Ecommerce2 days ago

Market America | SHOP.COM’s 2020 International Convention

Ecommerce2 days ago

First Pier Receives 2020 Clutch Award

Ecommerce2 days ago

Stellar Solutions Contributes Space Industry Expertise to Investors in…

Ecommerce2 days ago

Digital.com Names Top 15 Pay-Per-Click Agencies of 2020

Ecommerce2 days ago

New Balluff Mini Inductive Sensors Approved for up to 135 °C

AI2 days ago

Spookier Or Safer: How AI Autonomous Cars Alter Halloween Trick-Or-Treat Activities 

Trending