Zephyrnet Logosu

Nanostructured block copolymer muscles

Tarih:

  • Vukusic, P. & Sambles, J. R. Photonic structures in biology. Tabiat 424, 852 – 855 (2003).

    CAS 
    makale 

    Google Scholar
     

  • Hamm, C. E. et al. Architecture and material properties of diatom shells provide effective mechanical protection. Tabiat 421, 841 – 843 (2003).

    CAS 
    makale 

    Google Scholar
     

  • Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Bilim 329, 528 – 531 (2010).

    CAS 
    makale 

    Google Scholar
     

  • Wong, T.-S. ve ark. Basınca dayanıklı omnifobisite ile biyo-ilham verici, kendi kendini onaran kaygan yüzeyler. Tabiat 477, 443 – 447 (2011).

    CAS 
    makale 

    Google Scholar
     

  • Tang, Z., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nat. Anne. 2, 413 – 418 (2003).

    CAS 
    makale 

    Google Scholar
     

  • Hannig, M. & Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanoteknoloji. 5, 565 – 569 (2010).

    CAS 
    makale 

    Google Scholar
     

  • Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Anne. 14, 23 – 36 (2015).

    CAS 
    makale 

    Google Scholar
     

  • Bell, F. I., McEwen, I. J. & Viney, C. Supercontraction stress in wet spider dragline. Tabiat 416, 37 – 37 (2002).

    CAS 
    makale 

    Google Scholar
     

  • Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Bilim 319, 1370 – 1374 (2008).

    CAS 
    makale 

    Google Scholar
     

  • O, X. ve ark. Kemo-mekano-kimyasal kendi kendini düzenleyen sentetik homeostatik malzemeler. Tabiat 487, 214 – 218 (2012).

    CAS 
    makale 

    Google Scholar
     

  • Lieber R. L. Skeletal Muscle Structure, Function, and Plasticity 2nd edn (Lippincott Williams & Wilkins, 2002).

  • Puthucheary, Z., Montgomery, H., Moxham, J., Harridge, S. & Hart, N. Structure to function: muscle failure in critically ill patients. J. Physiol. 588, 4641 – 4648 (2010).

    CAS 
    makale 

    Google Scholar
     

  • Li, C. et al. Fast and programmable locomotion of hydrogel–metal hybrids under light and magnetic fields. bilim Robot. 5, eabb9822 (2020).

    makale 

    Google Scholar
     

  • Hu, W., Lum, GZ, Mastrangeli, M. & Sitti, M. Çok modlu hareket kabiliyetine sahip küçük ölçekli yumuşak gövdeli robot. Tabiat 554, 81 – 85 (2018).

    CAS 
    makale 

    Google Scholar
     

  • Biddiss, E. & Chau, T. Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med. Müh. Fizik 30, 403 – 418 (2008).

    makale 

    Google Scholar
     

  • Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Gelişmiş. 3, e1601984 (2017).

    makale 
    CAS 

    Google Scholar
     

  • Eschen, K., Granberry, R. & Abel, J. Guidelines on the design, characterization, and operation of shape memory alloy knitted actuators. Akıllı Mater. Yapı. 29, 035036 (2020).

    CAS 
    makale 

    Google Scholar
     

  • Zhao, H. et al. Wearable sunlight-triggered bimorph textile actuators. Nano Let. 21, 8126 – 8134 (2021).

    CAS 
    makale 

    Google Scholar
     

  • Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Gelişmiş. Mater. 30, 1704407 (2018).

    makale 
    CAS 

    Google Scholar
     

  • Kanık, M. et al. Gerinim programlanabilir fiber tabanlı yapay kas. Bilim 365, 145 – 150 (2019).

    CAS 
    makale 

    Google Scholar
     

  • Mu, J. et al. Kılıfla çalışan yapay kaslar. Bilim 365, 150 – 155 (2019).

    CAS 
    makale 

    Google Scholar
     

  • Yuan, J. et al. Bağlanmamış yüksek enerjili mikro motorlar için hafızalı nanokompozit fiberleri şekillendirin. Bilim 365, 155 – 158 (2019).

    CAS 
    makale 

    Google Scholar
     

  • Chen, P. et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanoteknoloji. 10, 1077 – 1083 (2015).

    CAS 
    makale 

    Google Scholar
     

  • Liu, D. et al. Spider dragline silk as torsional actuator driven by humidity. Sci. Gelişmiş. 5, eau9183 (2019).

    CAS 
    makale 

    Google Scholar
     

  • Bates, F. S. & Fredrickson, G. Block copolymers—designer soft materials. fizik Bugün 52, 32 – 38 (1999).

    CAS 
    makale 

    Google Scholar
     

  • Bates, F. S. et al. Multiblock polymers: panacea or Pandora’s box? Bilim 336, 434 – 440 (2012).

    CAS 
    makale 

    Google Scholar
     

  • Mai, Y. & Eisenberg, A. Self-assembly of block copolymers. Kimya Soc. Rev. 41, 5969 – 5985 (2012).

    CAS 
    makale 

    Google Scholar
     

  • Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers—pure potential. Makro moleküller 50, 3 – 22 (2017).

    CAS 
    makale 

    Google Scholar
     

  • Shin, J. et al. Pressure-sensitive adhesives from renewable triblock copolymers. Makro moleküller 44, 87 – 94 (2011).

    CAS 
    makale 

    Google Scholar
     

  • Jeong, B., Bae, Y. H., Lee, D. S. & Kim, S. W. Biodegradable block copolymers as injectable drug-delivery systems. Tabiat 388, 860 – 862 (1997).

    CAS 
    makale 

    Google Scholar
     

  • Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanoteknoloji. 2, 249 – 255 (2007).

    CAS 
    makale 

    Google Scholar
     

  • Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium–metal batteries. Nat. Anne. 12, 452 – 457 (2013).

    CAS 
    makale 

    Google Scholar
     

  • Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Anne. 7, 900 – 906 (2008).

    CAS 
    makale 

    Google Scholar
     

  • Tu, Y.-M. et al. Rapid fabrication of precise high-throughput filters from membrane protein nanosheets. Nat. Anne. 19, 347 – 354 (2020).

    CAS 
    makale 

    Google Scholar
     

  • Phillip, W. A. et al. Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Let. 11, 2892 – 2900 (2011).

    CAS 
    makale 

    Google Scholar
     

  • Peinemann, K.-V., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nat. Anne. 6, 992 – 996 (2007).

    CAS 
    makale 

    Google Scholar
     

  • Lang, C. et al. Solvent-non-solvent rapid-injection for preparing nanostructured materials from micelles to hydrogels. Nat. Commun. 10, 3855 (2019).

    makale 
    CAS 

    Google Scholar
     

  • Lynd, N. A., Meuler, A. J. & Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polim. bilim 33, 875 – 893 (2008).

    CAS 
    makale 

    Google Scholar
     

  • Li, M.-H., Keller, P., Yang, J. & Albouy, P.-A. An artificial muscle with lamellar structure based on a nematic triblock copolymer. Gelişmiş. Mater. 16, 1922 – 1925 (2004).

    CAS 
    makale 

    Google Scholar
     

  • Taribagil, R. R., Hillmyer, M. A. & Lodge, T. P. Hydrogels from ABA and ABC triblock polymers. Makro moleküller 43, 5396 – 5404 (2010).

    CAS 
    makale 

    Google Scholar
     

  • Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Bilim 358, 870 – 872 (2017).

    CAS 
    makale 

    Google Scholar
     

  • Kou, L. et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014).

    CAS 
    makale 

    Google Scholar
     

  • Zhu, L. et al. Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline–amorphous diblock copolymer. J. Am. Chem. Soc. 122, 5957 – 5967 (2000).

    CAS 
    makale 

    Google Scholar
     

  • Takahashi, Y. & Tadokoro, H. Structural studies of polyethers, (–(CH2)m–O–)n. X. Crystal structure of poly(ethylene oxide). Makro moleküller 6, 672 – 675 (1973).

    CAS 
    makale 

    Google Scholar
     

  • Ponçot, M. et al. Complementarities of high energy WAXS and Raman spectroscopy measurements to study the crystalline phase orientation in polypropylene blends during tensile test. Polimer 80, 27 – 37 (2015).

    makale 
    CAS 

    Google Scholar
     

  • Zhao, D. et al. Tunable multiscale nanoparticle ordering by polymer crystallization. ACS Cent. bilim 3, 751 – 758 (2017).

    CAS 
    makale 

    Google Scholar
     

  • Rall, J. A. What makes skeletal muscle striated? Discoveries in the endosarcomeric and exosarcomeric cytoskeleton. Adv. Physiol. Educ. 42, 672 – 684 (2018).

    makale 

    Google Scholar
     

  • Schneidereit, D. et al. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. Işık Bilimi. Uygulama 7, 79 (2018).

    makale 
    CAS 

    Google Scholar
     

  • Madden, JDW ve ark. Yapay kas teknolojisi: fiziksel ilkeler ve deniz umutları. IEEE J. Ocean. Müh. 29, 706 – 728 (2004).

    makale 

    Google Scholar
     

  • Lang, C. et al. Biomimetic separation of transport and matrix functions in lamellar block copolymer channel-based membranes. ACS Nano 13, 8292 – 8302 (2019).

    CAS 
    makale 

    Google Scholar
     

  • Lang, C., Kumar, M. & Hickey, R. J. Influence of block sequence on the colloidal self-assembly of poly(norbornene)–block–poly(ethylene oxide) amphiphilic block polymers using rapid injection processing. Polim. Kimya 11, 375 – 384 (2020).

    CAS 
    makale 

    Google Scholar
     

  • Guo, C. & Bailey, T. S. Highly distensible nanostructured elastic hydrogels from AB diblock and ABA triblock copolymer melt blends. Yumuşak Madde 6, 4807 – 4818 (2010).

    CAS 
    makale 

    Google Scholar
     

  • spot_img

    En Son İstihbarat

    spot_img

    Bizimle sohbet

    Merhaba! Size nasıl yardım edebilirim?