Zephyrnet Logosu

Biyolojik ve nanoparçacık terapötiklerinin endositozunu incelemek için temel ilkeler ve yöntemler

Tarih:

  • 1.

    Karasneh, G. A. & Shukla, D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol. J. 8, 481 (2011).

    CAS  Google Scholar 

  • 2.

    Tang, R. et al. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7, 6667 – 6673 (2013).

    CAS  Google Scholar 

  • 3.

    Mout, R. et al. General strategy for direct cytosolic protein delivery via protein–nanoparticle co-engineering. ACS Nano 11, 6416 – 6421 (2017).

    CAS  Google Scholar 

  • 4.

    Wilhelm, S. vd. Tümörlere nanopartikül dağıtımının analizi. Nat. Rahip Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  • 5.

    Tsoi, KM vd. Karaciğer tarafından sert nanomateryal temizleme mekanizması. Nat. Anne. 15, 1212 – 1221 (2016).

    CAS  Google Scholar 

  • 6.

    Chew, H. Y. et al. Endocytosis inhibition in humans to improve responses to ADCC-mediating antibodies. Hücre 180, 895-914.e27 (2020).

    CAS  Google Scholar 

  • 7.

    Yamashita, T., Takahashi, Y. & Takakura, Y. Ekzozom bazlı terapötiklerin olasılığı ve terapötik uygulama için uygun eksozomların üretiminde zorluklar. Biol. Ecz. Boğa. 41, 835 – 842 (2018).

    CAS  Google Scholar 

  • 8.

    Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biyoteknoloji. 31, 638 – 646 (2013). Detailed ultrastructural analysis of lipid nanoparticle uptake, and siRNA delivery, in cultured cells and in mouse liver.

    CAS  Google Scholar 

  • 9.

    Sahay, G., Alakhova, D. Y. & Kabanov, A. V. Endocytosis of nanomedicines. J. Kontrol. Serbest bırakmak 145, 182 – 195 (2010).

    CAS  Google Scholar 

  • 10

    Johannes, L., Parton, R. G., Bassereau, P. & Mayor, S. Building endocytic pits without clathrin. Nat. Rev. Mol. Hücre Biol. 16, 311 – 321 (2015).

    CAS  Google Scholar 

  • 11

    Thottacherry, J. J., Sathe, M., Prabhakara, C. & Mayor, S. Spoiled for choice: diverse endocytic pathways function at the cell surface. Annu. Rev. Celi Dev. Biol. 35, 55 – 84 (2019). A comprehensive topical review of clathrin-dependent and clathrin-independent endocytic pathways.

    CAS  Google Scholar 

  • 12

    Parton, R. G. Caveolae: structure, function, and relationship to disease. Annu. Rev. Celi Dev. Biol. 34, 111 – 136 (2018).

    CAS  Google Scholar 

  • 13

    Kumari, S., MG, S. & Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Hücre Araş. 20, 256 – 275 (2010).

    CAS  Google Scholar 

  • 14

    Chaudhary, N. et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol. 12, e1001832 (2014).

    Google Scholar 

  • 15

    Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Hücre Biol. 131, 69 – 80 (1995).

    CAS  Google Scholar 

  • 16

    Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Tabiat 517, 460 – 465 (2015). Characterization of a novel endophilin-dependent pathway, termed FEME.

  • 17

    Brown, C. M. & Petersen, N. O. Free clathrin triskelions are required for the stability of clathrin-associated adaptor protein (AP-2) coated pit nucleation sites. Biyokimya. Hücre Biol. 77, 439 – 448 (1999).

    CAS  Google Scholar 

  • 18

    Ehrlich, M. vd. Klatrin kaplı çukurların rastgele başlatılması ve stabilizasyonu ile endositoz. Hücre 118, 591 – 605 (2004).

    CAS  Google Scholar 

  • 19

    Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Hücre Konakçı Mikrop 2, 340 – 351 (2007).

    CAS  Google Scholar 

  • 20

    Li, Z. et al. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Makro Let. 5, 1059 – 1064 (2016).

    CAS  Google Scholar 

  • 21

    Howes, M. T. et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J. Hücre Biol. 190, 675 – 691 (2010).

    CAS  Google Scholar 

  • 22

    Hemalatha, A., Prabhakara, C. & Mayor, S. Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs. Proc. Natl Acad. Sci. Amerika Birleşik Devletleri 113E6993 --- E7002 (2016).

    CAS  Google Scholar 

  • 23

    Sathe, M. et al. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat. Commun. 9, 1835 (2018).

    Google Scholar 

  • 24

    Lakshminarayan, R. et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Celi Biol. 16, 592 – 603 (2014).

    Google Scholar 

  • 25

    Sandvig, K. & van Deurs, B. Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949 – 966 (1996).

    CAS  Google Scholar 

  • 26

    Thottacherry, J. J. et al. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat. Commun. 9, 4217 (2018).

    Google Scholar 

  • 27

    Condon, N. D. et al. Macropinosome formation by tent pole ruffling in macrophages. J. Hücre Biol. 217, 3873 – 3885 (2018).

    CAS  Google Scholar 

  • 28

    Lin, X. P., Mintern, J. D. & Gleeson, P. A. Macropinocytosis in different cell types: similarities and differences. Zarlar 10, 177 (2020).

    CAS  Google Scholar 

  • 29

    Kerr, M. C. & Teasdale, R. D. Defining macropinocytosis. Trafik 10, 364 – 371 (2009).

    CAS  Google Scholar 

  • 30

    Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. immünol. Hücre Biol. 89, 836 – 843 (2011).

    CAS  Google Scholar 

  • 31

    Commisso, C. vd. Proteinin makropinositozu, Ras ile dönüştürülmüş hücrelerde bir amino asit tedarik yoludur. Tabiat 497, 633 – 637 (2013). Macropinocytosis is shown to have a crucial role in providing nutrients for cancer cells through the internalization and catabolism of extracellular proteins.

    CAS  Google Scholar 

  • 32

    Ha, K. D., Bidlingmaier, S. M. & Liu, B. Macropinocytosis exploitation by cancers and cancer therapeutics. Ön. Physiol. 7, 381 (2016).

    Google Scholar 

  • 33

    Palm, W. Metabolic functions of macropinocytosis. Philos. Trans. R. Soc. B 374, 20180285 (2019).

    CAS  Google Scholar 

  • 34

    Niedergang, F. & Grinstein, S. How to build a phagosome: new concepts for an old process. Kör. Görüş. Hücre Biol. 50, 57 – 63 (2018).

    CAS  Google Scholar 

  • 35

    Lim, J. J., Grinstein, S. & Roth, Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Ön. Hücre. Infect. Microbiol. 7, 191 (2017).

    Google Scholar 

  • 36

    Desjardins, M. & Griffiths, G. Phagocytosis: latex leads the way. Kör. Görüş. Hücre Biol. 15, 498 – 503 (2003).

    CAS  Google Scholar 

  • 37

    Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857 – 902 (2009).

    CAS  Google Scholar 

  • 38

    Harrison, R. E., Bucci, C., Vieira, O. V., Schroer, T. A. & Grinstein, S. Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol. Hücre. Biol. 23, 6494 – 6506 (2003).

    CAS  Google Scholar 

  • 39

    Parton, R. G. et al. Caveolae: the FAQs. Trafik 21, 181 – 185 (2020).

    CAS  Google Scholar 

  • 40

    Schubert, W. et al. Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. J. Biol. Chem. 277, 40091 – 40098 (2002).

    CAS  Google Scholar 

  • 41

    Kirkham, M. et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Hücre Biol. 168, 465 – 476 (2005).

    CAS  Google Scholar 

  • 42

    Rewatkar, P. V., Parton, R. G., Parekh, H. S. & Parat, M.-O. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Gelişmiş. İlaç Deliv. Rev. 91, 92 – 108 (2015). A critical review of studies implicating caveolae in nanoparticle uptake.

    CAS  Google Scholar 

  • 43

    Richter, T. et al. High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola–cytoskeleton interactions. Trafik 9, 893 – 909 (2008).

    CAS  Google Scholar 

  • 44

    Chadda, R. et al. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Trafik 8, 702 – 717 (2007).

    CAS  Google Scholar 

  • 45

    Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Celi Biol. 3, 473 – 483 (2001).

    CAS  Google Scholar 

  • 46

    Parton, R. G. & Howes, M. T. Revisiting caveolin trafficking: the end of the caveosome. J. Hücre Biol. 191, 439 – 441 (2010).

    CAS  Google Scholar 

  • 47

    Shin, J. S., Gao, Z. & Abraham, S. N. Involvement of cellular caveolae in bacterial entry into mast cells. Bilim 289, 785 – 788 (2000).

    CAS  Google Scholar 

  • 48

    Rejman, J., Oberle, V., Zuhorn, I. S. & Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biyokimya. J. 377, 159 – 169 (2004).

    CAS  Google Scholar 

  • 49

    Iversen, T.-G., Skotland, T. & Sandvig, K. Endositoz ve nanopartiküllerin hücre içi taşınması: mevcut bilgi ve gelecekteki çalışmalara ihtiyaç. Nano Bugün 6, 176 – 185 (2011).

    CAS  Google Scholar 

  • 50

    Liebl, D., Qi, X., Zhe, Y., Barnett, T. C. & Teasdale, R. D. SopB-mediated recruitment of SNX18 facilitates Salmonella typhimurium internalization by the host cell. Ön. Hücre. Infect. Microbiol. 7, 257 (2017).

    Google Scholar 

  • 51

    Aggeler, J. & Werb, Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane–particle interactions and clathrin. J. Hücre Biol. 94, 613 – 623 (1982).

    CAS  Google Scholar 

  • 52

    Caracciolo, G. et al. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Uyg. Mater. Arayüzler 5, 13171 – 13179 (2013).

    CAS  Google Scholar 

  • 53

    Faria, M. vd. Biyo-nano deneysel literatürde minimum bilgi raporlama. Nat. Nanoteknoloji. 13, 777 – 785 (2018). Practical guidelines for studying nanoparticle uptake.

    CAS  Google Scholar 

  • 54

    Francia, V., Reker-Smit, C., Boel, G. & Salvati, A. Limits and challenges in using transport inhibitors to characterize how nano-sized drug carriers enter cells. Nanotıp 14, 1533 – 1549 (2019).

    CAS  Google Scholar 

  • 55

    Johnston, A. P. R. Life under the microscope: quantifying live cell interactions to improve nanoscale drug delivery. ACS Sensörleri 2, 4 – 9 (2017).

    CAS  Google Scholar 

  • 56

    Liu, H. & Johnston, A. P. R. A programmable sensor to probe the internalization of proteins and nanoparticles in live cells. Ange. Kimya Int. Ed. 52, 5744 – 5748 (2013).

    CAS  Google Scholar 

  • 57

    Selby, L. I., Aurelio, L., Yuen, D., Graham, B. & Johnston, A. P. R. Quantifying cellular internalization with a fluorescent click sensor. ACS Sensörleri 3, 1182 – 1189 (2018).

    CAS  Google Scholar 

  • 58

    FitzGerald, L. I. & Johnston, A. P. R. It’s what’s on the inside that counts: techniques for investigating the uptake and recycling of nanoparticles and proteins in cells. J. Kolloid Arayüz Bilimi. 587, 64 – 78 (2021).

  • 59

    Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Tabiat 436, 78 – 86 (2005).

    CAS  Google Scholar 

  • 60

    Sundaramurthy, V. et al. Integration of chemical and RNAi multiparametric profiles identifies triggers of intracellular mycobacterial killing. Hücre Konakçı Mikrop 13, 129 – 142 (2013).

    CAS  Google Scholar 

  • 61

    Jovic, M., Sharma, M., Rahajeng, J. & Caplan, S. The early endosome: a busy sorting station for proteins at the crossroads. Histol. Histopatol. 25, 99 – 112 (2010).

    CAS  Google Scholar 

  • 62

    Kalaidzidis, I. et al. APPL endosomes are not obligatory endocytic intermediates but act as stable cargo-sorting compartments. J. Hücre Biol. 211, 123 – 144 (2015).

    CAS  Google Scholar 

  • 63

    Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Hücre 136, 1110 – 1121 (2009).

    CAS  Google Scholar 

  • 64

    Eyster, C. A. et al. Discovery of new cargo proteins that enter cells through clathrin-independent endocytosis. Trafik 10, 590 – 599 (2009).

    CAS  Google Scholar 

  • 65

    Maldonado-Báez, L., Cole, N. B., Krämer, H. & Donaldson, J. G. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J. Hücre Biol. 201, 233 – 247 (2013).

    Google Scholar 

  • 66

    Khalil, I. A., Kogure, K., Futaki, S. & Harashima, H. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 281, 3544 – 3551 (2006).

    CAS  Google Scholar 

  • 67

    Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. TELLER Nanomed. Nanobiotechnol. 9, e1452 (2017). A review of our current understanding of endosomal escape in relation to nanoparticle delivery.

    Google Scholar 

  • 68

    Erazo-Oliveras, A. et al. The late endosome and its lipid BMP act as gateways for efficient cytosolic access of the delivery agent dfTAT and its macromolecular cargos. Hücre Kimyası. Biol. 23, 598 – 607 (2016).

    CAS  Google Scholar 

  • 69

    Cupic, K. I., Rennick, J. J., Johnston, A. P. & Such, G. K. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives. Nanotıp 14, 215 – 223 (2019).

    CAS  Google Scholar 

  • 70

    Smith, S. A., Selby, L. I., Johnston, A. P. R. & Such, G. K. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bıoconjug. Chem. 30, 263 – 272 (2019).

    CAS  Google Scholar 

  • 71

    Weigert, R. Imaging the dynamics of endocytosis in live mammalian tissues. Soğuk Bahar Harb. Perspet. Biol. 6, a017012 (2014).

    Google Scholar 

  • 72

    Hinze, C. & Boucrot, E. Endocytosis in proliferating, quiescent and terminally differentiated cells. J. Celi Sci. 131, jcs216804 (2018).

    Google Scholar 

  • 73

    Masedunskas, A., Porat-Shliom, N., Rechache, K., Aye, M.-P. & Weigert, R. Intravital microscopy reveals differences in the kinetics of endocytic pathways between cell cultures and live animals. Hücreler 1, 1121 – 1132 (2012).

    Google Scholar 

  • 74

    Bhirde, A. A. et al. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano 8, 4177 – 4189 (2014).

    CAS  Google Scholar 

  • 75

    Pinilla-Macua, I., Grassart, A., Duvvuri, U., Watkins, S. C. & Sorkin, A. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. elife 6, e31993 (2017).

  • 76

    Ebrahim, S. & Weigert, R. Intravital microscopy in mammalian multicellular organisms. Curr. Opin. Celi Biol. 59, 97 – 103 (2019). A summary of state-of-the-art methods in intravital microscopy being used to study cell biology in vivo.

  • 77

    Fung, K. Y. Y., Fairn, G. D. & Lee, W. L. Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Trafik 19, 5 – 18 (2018).

    CAS  Google Scholar 

  • 78

    Joseph, S. R. et al. An ex vivo human tumor assay shows distinct patterns of EGFR trafficking in squamous cell carcinoma correlating to therapeutic outcomes. J. Yatırım. Dermatol. 139, 213 – 223 (2019). An imaging method to study ligand-induced epidermal growth factor receptor internalization in ex vivo human tumour samples.

  • 79

    Hansen, S. H., Sandvig, K. & van Deurs, B. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J. Hücre Biol. 123, 89 – 97 (1993).

    CAS  Google Scholar 

  • 80

    Carpentier, J.-L. et al. Potassium depletion and hypertonic medium reduce non-coated and clathrin-coated pit formation, as well as endocytosis through these two gates. J. Celi. Physiol. 138, 519 – 526 (1989).

    CAS  Google Scholar 

  • 81

    Larkin, J. M., Brown, M. S., Goldstein, J. L. & Anderson, R. G. W. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Hücre 33, 273 – 285 (1983).

    CAS  Google Scholar 

  • 82

    Daniel, J. A. et al. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Trafik 16, 635 – 654 (2015).

    CAS  Google Scholar 

  • 83

    Wang, L. H., Rothberg, K. G. & Anderson, R. G. W. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Hücre Biol. 123, 1107 – 1117 (1993).

    CAS  Google Scholar 

  • 84

    Sasso, L., Purdie, L., Grabowska, A., Jones, A. T. & Alexander, C. Time and cell-dependent effects of endocytosis inhibitors on the internalization of biomolecule markers and nanomaterials. J. Interdiscip. Nanomedicine 3, 67 – 81 (2018).

    CAS  Google Scholar 

  • 85

    Chen, C.-L. et al. Inhibitors of clathrin-dependent endocytosis enhance TGF signaling and responses. J. Celi Sci. 122, 1863 – 1871 (2009).

    CAS  Google Scholar 

  • 86

    von Kleist, L. et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Hücre 146, 471 – 484 (2011).

    Google Scholar 

  • 87

    Dutta, D., Williamson, C. D., Cole, N. B. & Donaldson, J. G. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS ONE 7, e45799 (2012).

    CAS  Google Scholar 

  • 88

    Willox, A. K., Sahraoui, Y. M. E. & Royle, S. J. Non-specificity of Pitstop 2 in clathrin-mediated endocytosis. Biol. Açık 3, 326 – 331 (2014).

    CAS  Google Scholar 

  • 89

    Macia, E. vd. Dynasore, hücre geçirgen bir dinamin inhibitörü. Dev. Hücre 10, 839 – 850 (2006).

    CAS  Google Scholar 

  • 90

    McCluskey, A. et al. Building a better dynasore: the Dyngo compounds potently inhibit dynamin and endocytosis. Trafik 14, 1272 – 1289 (2013).

    CAS  Google Scholar 

  • 91

    Park, R. J. et al. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J. Celi Sci. 126, 5305 – 5312 (2013).

    CAS  Google Scholar 

  • 92

    Kilsdonk, E. P. C. et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270, 17250 – 17256 (1995).

    CAS  Google Scholar 

  • 93

    Hao, M., Mukherjee, S., Sun, Y. & Maxfield, F. R. Effects of cholesterol depletion and increased lipid unsaturation on the properties of endocytic membranes. J. Biol. Chem. 279, 14171 – 14178 (2004).

    CAS  Google Scholar 

  • 94

    Bolard, J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta Rev. Biomembr. 864, 257 – 304 (1986).

    CAS  Google Scholar 

  • 95

    Rentero, C. et al. Functional implications of plasma membrane condensation for T cell activation. PLoS ONE 3, e2262 (2008).

    Google Scholar 

  • 96

    Akiyama, T. et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592 – 5595 (1987).

    CAS  Google Scholar 

  • 97

    Parton, R. G., Joggerst, B. & Simons, K. Regulated internalization of caveolae. J. Hücre Biol. 127, 1199 – 1215 (1994).

    CAS  Google Scholar 

  • 98

    Brenner, S. L. & Korn, E. D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J. Biol. Chem. 254, 9982 – 9985 (1979).

    CAS  Google Scholar 

  • 99

    Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis. Trafik 1, 161 – 171 (2000).

    CAS  Google Scholar 

  • 100

    Gladhaug, I. P. & Christoffersen, T. Amiloride inhibits constitutive internalization and increases the surface number of epidermal growth factor receptors in intact rat hepatocytes. J. Celi. Physiol. 143, 188 – 195 (1990).

    CAS  Google Scholar 

  • 101

    Kleyman, T. R. & Cragoe, E. J. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105, 1 – 21 (1988).

    CAS  Google Scholar 

  • 102

    Henriksen, L., Grandal, M. V., Knudsen, S. L. J., van Deurs, B. & Grøvdal, L. M. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLoS ONE 8, e58148 (2013).

    CAS  Google Scholar 

  • 103

    Ceresa, B. P., Kao, A. W., Santeler, S. R. & Pessin, J. E. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol. Hücre. Biol. 18, 3862 – 3870 (1998).

    CAS  Google Scholar 

  • 104

    Liu, S.-H., Marks, M. S. & Brodsky, F. M. A dominant-negative clathrin mutant differentially affects trafficking of molecules with distinct sorting motifs in the class II major histocompatibility complex (MHC) pathway. J. Hücre Biol. 140, 1023 – 1037 (1998).

    CAS  Google Scholar 

  • 105

    Hill, M. M. et al. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Hücre 132, 113 – 124 (2008).

    CAS  Google Scholar 

  • 106

    Liberali, P. et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 27, 970 – 981 (2008).

    CAS  Google Scholar 

  • 107

    Kalin, S. et al. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J.Virol. 84, 5336 – 5350 (2010).

    CAS  Google Scholar 

  • 108

    Licona-Limón, I., Garay-Canales, C. A., Muñoz-Paleta, O. & Ortega, E. CD13 mediates phagocytosis in human monocytic cells. J. Leukoc. Biyol. 98, 85 – 98 (2015).

    Google Scholar 

  • 109

    Gambin, Y. et al. Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. elife 3, e01434 (2014).

    Google Scholar 

  • 110

    Bitsikas, V., Corrêa, I. R. & Nichols, B. J. Clathrin-independent pathways do not contribute significantly to endocytic flux. elife 3, e03970 (2014).

  • 111

    Arredouani, M. S. et al. MARCO Is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. İmmünol. 175, 6058 – 6064 (2005).

    CAS  Google Scholar 

  • 112

    Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Tabiat 422, 37 – 44 (2003).

    CAS  Google Scholar 

  • 113

    King, J. S. & Kay, R. R. The origins and evolution of macropinocytosis. Philos. Trans. R. Soc. B 374, 20180158 (2019).

    CAS  Google Scholar 

  • 114

    Yuan, M. et al. Enhanced human enterovirus 71 infection by endocytosis inhibitors reveals multiple entry pathways by enterovirus causing hand-foot-and-mouth diseases. Virol. J. 15, 1 (2018).

    Google Scholar 

  • 115

    Volonte, D. et al. Caveolin-1 promotes the tumor suppressor properties of oncogene-induced cellular senescence. J. Biol. Chem. 293, 1794 – 1809 (2018).

    CAS  Google Scholar 

  • 116

    Yang, C.-P. H., Galbiati, F., Volonté, D., Horwitz, S. B. & Lisanti, M. P. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 439, 368 – 372 (1998).

    CAS  Google Scholar 

  • 117

    Qhattal, H. S. S. & Liu, X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol. Ecz. 8, 1233 – 1246 (2011).

    CAS  Google Scholar 

  • 118

    Yoon, Y.-K. et al. KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: implication for combinatorial approach. Mol. kanserojen. 49, 353 – 362 (2010).

    CAS  Google Scholar 

  • 119

    Yang, Y. et al. Endophilin A1 regulates dendritic spine morphogenesis and stability through interaction with p140Cap. Hücre Araş. 25, 496 – 516 (2015).

    CAS  Google Scholar 

  • 120

    Torrino, S. et al. EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. J. Hücre Biol. 217, 4092 – 4105 (2018).

    CAS  Google Scholar 

  • 121

    Aït-Slimane, T., Galmes, R., Trugnan, G. & Maurice, M. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol. Biol. Hücre 20, 3792 – 3800 (2009).

    Google Scholar 

  • 122

    Zhang, J. et al. Distinct functions of endophilin isoforms in synaptic vesicle endocytosis. Nöral Plast. 2015, 371496 (2015).

  • 123

    Moore, R. H. et al. Ligand-stimulated β2-adrenergic receptor internalization via the constitutive endocytic pathway into rab5-containing endosomes. J. Celi Sci. 108, 2983 – 2991 (1995).

    CAS  Google Scholar 

  • 124

    Nonnenmacher, M. & Weber, T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Hücre Konakçı Mikrop 10, 563 – 576 (2011).

    CAS  Google Scholar 

  • 125

    Chen, S.-L. et al. Endophilin-A2-mediated endocytic pathway is critical for enterovirus 71 entry into caco-2 cells. Ortaya çıktı. Mikroplar Bulaşır. 8, 773 – 786 (2019).

    CAS  Google Scholar 

  • 126

    Mirre, C., Monlauzeur, L., Garcia, M., Delgrossi, M. H. & Le Bivic, A. Detergent-resistant membrane microdomains from Caco-2 cells do not contain caveolin. Am. J. Physiol. Celi Physiol. 271, C887-C894 (1996).

    CAS  Google Scholar 

  • 127

    Zachos, N. C., Alamelumangpuram, B., Lee, L. J., Wang, P. & Kovbasnjuk, O. Carbachol-mediated endocytosis of NHE3 involves a clathrin-independent mechanism requiring lipid rafts and Cdc42. Hücre. Physiol. Biochem. 33, 869 – 881 (2014).

    CAS  Google Scholar 

  • Ödeme PrimeXBT
    AC Milan'ın Resmi CFD Ortaklarıyla Ticaret Yapın
    Kaynak: https://www.nature.com/articles/s41565-021-00858-8

    spot_img

    En Son İstihbarat

    spot_img