Zephyrnet Logosu

FAIR nano güvenlik verilerine doğru

Tarih:

  • 1.

    Soeteman-Hernandez, L. G. et al. Safe innovation approach: towards an agile system for dealing with innovations. Anne. Bugün Komün. 20, 100548 (2019).

    CAS  makale  Google Scholar 

  • 2.

    Nymark, P. et al. Toward rigorous materials production: new approach methodologies have extensive potential to improve current safety assessment practices. Küçük 16, 1904749 (2020).

    CAS  makale  Google Scholar 

  • 3.

    Karcher, S. et al. Integration among databases and data sets to support productive nanotechnology: challenges and recommendations. NanoEtki 9, 85 – 101 (2018).

    makale  Google Scholar 

  • 4.

    Powers, C. M. et al. Nanocuration workflows: establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials. Beilstein J. Nanoteknoloji. 6, 1860 – 1871 (2015).

    CAS  makale  Google Scholar 

  • 5.

    Mahony, C., Currie, R., Daston, G., Kleinstreuer, N. & van de Water, B. Highlight report: ‘Big data in the 3R’s: outlook and recommendations’, a roundtable summary. Arch. Toksikol. 92, 1015 – 1020 (2018).

    CAS  makale  Google Scholar 

  • 6.

    Haase, A. & Klaessig, F. EU–US Roadmap Nanoinformatics 2030 (EU Nanosafety Cluster, 2017); https://doi.org/10.5281/zenodo.1486012

  • 7.

    Marchese Robinson, R. L. et al. How should the completeness and quality of curated nanomaterial data be evaluated? Nano ölçekli 8, 9919 – 9943 (2016).

    makale  CAS  Google Scholar 

  • 8.

    Giusti, A. et al. Nanomaterial grouping: existing approaches and future recommendations. NanoEtki 16, 100182 (2019).

    makale  Google Scholar 

  • 9.

    Haase, A. & Lynch, I. Quality in nanosafety—towards reliable nanomaterial safety assessment. NanoEtki 11, 67 – 68 (2018).

    makale  Google Scholar 

  • 10

    Comandella, D., Gottardo, S., Rio-Echevarria, I. M. & Rauscher, H. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability. Nano ölçekli 12, 4695 – 4708 (2020).

    CAS  makale  Google Scholar 

  • 11

    Tropsha, A., Mills, K. C. & Hickey, A. J. Reproducibility, sharing and progress in nanomaterial databases. Nat. Nanoteknoloji. 12, 1111 – 1114 (2017).

    CAS  makale  Google Scholar 

  • 12

    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Veri 3, 160018 (2016).

    makale  Google Scholar 

  • 13

    Hendren, C. O., Powers, C. M., Hoover, M. D. & Harper, S. L. The Nanomaterial Data Curation Initiative: a collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein J. Nanoteknoloji. 6, 1752 – 1762 (2015).

    CAS  makale  Google Scholar 

  • 14

    European Open Science Cloud (EOSC) Strategic Implementation Plan (Avrupa Komisyonu, 2019); https://op.europa.eu/en/publication-detail/-/publication/78ae5276-ae8e-11e9-9d01-01aa75ed71a1/language-en

  • 15

    Avrupa İçin Yeni Bir Sanayi Stratejisi (Avrupa Komisyonu, 2020); https://ec.europa.eu/info/sites/info/files/communication-eu-industrial-strategy-march-2020_en.pdf

  • 16

    A New Circular Economy Action Plan for a Cleaner and More Competitive Europe (Avrupa Komisyonu, 2020); https://ec.europa.eu/environment/circular-economy/pdf/new_circular_economy_action_plan.pdf

  • 17

    Chemicals Strategy for Sustainability Towards a Toxic-Free Environment (Avrupa Komisyonu, 2021); https://ec.europa.eu/environment/pdf/chemicals/2020/10/Strategy.pdf

  • 18

    Jeliazkova, N. et al. The eNanoMapper database for nanomaterial safety information. Beilstein J. Nanoteknoloji. 6, 1609 – 1634 (2015).

    CAS  makale  Google Scholar 

  • 19

    Jeliazkova, N. et al. Linking LRI AMBIT chemoinformatic system with the IUCLID substance database to support read-across of substance endpoint data and category formation. Toksikol. Lett. 258, S114 – S115 (2016).

    makale  Google Scholar 

  • 20

    Kochev, N., Jeliazkova, N. & Tsakovska, I. in Big Data in Predictive Toxicology (eds Neagu, D. & Richarz, A.-N.) 69–107 (The Royal Society of Chemistry, 2020).

  • 21

    Hastings, J. et al. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. J. Biomed. Semant. 6, 10 – 10 (2015).

    makale  Google Scholar 

  • 22

    Totaro, S. et al. The JRC Nanomaterials Repository: a unique facility providing representative test materials for nanoEHS research. Regul. Toxicol. Ecz. 81, 334 – 340 (2016).

    makale  Google Scholar 

  • 23

    Chomenidis, C. et al. Jaqpot Quattro: a novel computational web platform for modeling and analysis in nanoinformatics. J. Chem. Inf. Modeli 57, 2161 – 2172 (2017).

    CAS  makale  Google Scholar 

  • 24

    Mech, A. et al. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoksikoloji 13, 119 – 141 (2019).

    CAS  makale  Google Scholar 

  • 25

    Precupas, A. et al. Thermodynamic parameters at bio–nano Interface and nanomaterial toxicity: a case study on BSA interaction with ZnO, SiO2ve TiO2. Kimya Araş. Toksikol. 33, 2054 – 2071 (2020).

    CAS  makale  Google Scholar 

  • 26

    Berrios, D. C., Beheshti, A. & Costes, S. V. FAIRness and usability for open-access omics data systems. AMIA Annu Symp. Proc. 2018, 232 – 241 (2018).

    Google Scholar 

  • 27

    Jeliazkova, N. eNanoMapper—parsers for different NM data formats GitHub https://github.com/enanomapper/nmdataparser

  • 28

    Kochev, N. et al. Your spreadsheets can be FAIR: a tool and FAIRification workflow for the eNanoMapper Database. Nanomalzemeler 10, 1908 (2020).

    CAS  makale  Google Scholar 

  • 29

    Gottardo, S. et al. NANoREG Framework for the Safety Assessment of Nanomaterials (Joint Research Centre, 2017); https://doi.org/10.2760/245972

  • 30

    Kermanizadeh, A. et al. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA Project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Sağlık B 19, 1 – 28 (2016).

    CAS  makale  Google Scholar 

  • 31

    Bos, P. M. J. et al. The MARINA risk assessment strategy: a flexible strategy for efficient information collection and risk assessment of nanomaterials. Int. J. Environmental. Res. Halk Sağlığı 12, 15007 – 15021 (2015).

    makale  Google Scholar 

  • 32

    Nesslany, F. NANOGENOTOX European joint action: what could we learn from all these data?. Toksikol. Lett. 229, Ö35 (2014).

    makale  Google Scholar 

  • 33

    Juillerat-Jeanneret, L. et al. Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project. Nanotoksikoloji 9, 5 – 12 (2015).

    CAS  makale  Google Scholar 

  • 34

    Dusinska, M. et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoksikoloji 9, 118 – 132 (2015).

    CAS  makale  Google Scholar 

  • 35

    Nano Exposure & Contextual Information Database (NECID) (PEROSCH, accessed 1 March 2020); https://perosh.eu/research-projects/perosh-projects/necid/

  • 36

    Pelzer, J. Structure and functionality of the Nano Exposure and Contextual Information Database (NECID). Gefahrst. Reinhalt. Luft. 73, 302 – 304 (2013).

    CAS  Google Scholar 

  • 37

    Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nükleik Asitler Arş. 41, D991 – D995 (2013).

    CAS  makale  Google Scholar 

  • 38

    Kolesnikov, N. et al. ArrayExpress update—simplifying data submissions. Nükleik Asitler Arş. 43, D1113 – D1116 (2015).

    CAS  makale  Google Scholar 

  • 39

    NANOSOLUTIONS Data Repository (NANOSOLUTIONS, accessed 1 March 2020); http://nanosolutionsfp7.com/

  • 40

    Fernández-Cruz, M. L. et al. Quality evaluation of human and environmental toxicity studies performed with nanomaterials—the GUIDEnano approach. Environ. bilim nano 5, 381 – 397 (2018).

    makale  Google Scholar 

  • 41

    Gottardo, S., Quiros Pesudo, L., Totaro, S., Riego Sintes, J. & Crutzen, H. NANoREG Harmonised Terminology for Environmental Health and Safety Assessment of Nanomaterials (Avrupa Komisyonu, 2017); https://doi.org/10.2788/71213

  • 42

    Krebs, A. et al. Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ATLA 36, 682 – 699 (2019).

    Google Scholar 

  • 43

    Totaro, S., Crutzen, H. & Riego Sintes, J. Data Logging Templates for the Environmental, Health and Safety Assessment of Nanomaterials (Joint Research Centre, 2017); https://publications.jrc.ec.europa.eu/repository/handle/JRC103178

  • 44

    NANoREG Results Repository (RIVM, 2017); https://www.rivm.nl/en/about-rivm/mission-and-strategy/international-affairs/international-projects/nanoreg

  • 45

    Wilkinson, M. D. et al. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Sci. Veri 6, 174 (2019).

    makale  Google Scholar 

  • 46

    Criteria for FAIR Research Data (Swedish Research Council, 2019); https://staff.ki.se/the-fair-principles

  • 47

    Collins, S. et al. Turning FAIR into Reality. Final Report and Action Plan from the European Commission Expert Group on FAIR Data (Avrupa Komisyonu, 2018); https://doi.org/10.2777/1524

  • 48

    Willighagen E., Jeliazkova N. NanoCommons—nanomaterial identifiers, basis for European Registry of Nanomaterials (ERM) GitHub https://github.com/NanoCommons/identifiers/blob/master/registry

  • 49

    Nymark, P. et al. caLIBRAte D5.3—Document on Quality Criteria for Data (EU Nanosafety Cluster, 2017); https://doi.org/10.5281/zenodo.3859951

  • 50

    Ammar, A. et al. A semi-automated workflow for FAIR maturity indicators in the life sciences. Nanomalzemeler 10, 2068 (2020).

    CAS  makale  Google Scholar 

  • 51

    Nymark, P. et al. Grouping of representative nanomaterials is efficiently executed by combining high-throughput-generated biological data with physicochemical data. Toksikol. Lett. 314, abstr. OP02-02 (2019).

    Google Scholar 

  • 52

    Marvel, S. W. et al. ToxPi Graphical User Interface 2.0: dynamic exploration, visualization, and sharing of integrated data models. BMC Bioinf. 19, 80 (2018).

    makale  CAS  Google Scholar 

  • 53

    Lamon, L. et al. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Bölüm. Fiber Toxicol. 15, 37 (2018).

    CAS  makale  Google Scholar 

  • 54

    Antikainen, M., Uusitalo, T. & Kivikytö-Reponen, P. Digitalisation as an enabler of circular economy. Procedia CIRP 73, 45 – 49 (2018).

    makale  Google Scholar 

  • 55

    Falzetti, M., Keiper, W., Igartua, A. & Alliance for Materials (A4M) Consortium. Opinion Paper on Governance and Strategic Programming of Materials Research and Innovation in Horizon Europe (EUMAT, 2019); https://www.eumat.eu/media/uploads/descargas/2019_02_a4m_position_paper_v44.pdf

  • 56

    Carusi, A. et al. Harvesting the promise of AOPs: an assessment and recommendations. Sci. Toplam Çevre 628-629, 1542 – 1556 (2018).

    makale  CAS  Google Scholar 

  • 57

    Martens, M. et al. WikiPathways: connecting communities. Nükleik Asitler Arş. 49, D613 – D621 (2021).

    CAS  makale  Google Scholar 

  • 58

    Davis, A. P. et al. Comparative Toxicogenomics Database (CTD): update 2021. Nükleik Asitler Arş. 49, D1138 – D1143 (2021).

    CAS  makale  Google Scholar 

  • 59

    Sansone, S.-A. et al. Toward interoperable bioscience data. Nat. Genet. 44, 121 – 126 (2012).

    CAS  makale  Google Scholar 

  • 60

    Jeliazkova, N., Haase, A., Ritchie, P., Shahzad, R. & Nymark, P. NanoReg2 D1.8—Report on the Defined ISA‐TAB Nano Templates (Avrupa Komisyonu, 2016).

  • 61

    Jeliazkova, N. & Jeliazkov, V. AMBIT RESTful web services: an implementation of the OpenTox application programming interface. J. Cheminformatics 3, 18 (2011).

    CAS  makale  Google Scholar 

  • 62

    Shandilya, N. et al. NanoReg2 D3.2—Database/Structural Model and Report Describing the Relationships between Functionality, Physicochemical Properties and Hazard, and Allowing for Integration in the Safe Innovation Approach (2018); https://doi.org/10.5281/zenodo.3854938

  • 63

    NANoREG D6.05 Database sql (RIVM, accessed 23 November 2019); https://www.rivm.nl/en/documenten/nanoreg-d605-database-sql

  • 64

    Tanasescu, S. et al. in Nanomaterials—Functional Properties and Applications (eds Zaharescu, M. et al.) 85–97 (Publishing House of the Romanian Academy, 2020).

  • 65

    Jeliazkova, N. et al. eNanoMapper D3.4—ISA-Tab Templates for Common Bioselected Set of Assays (Avrupa Komisyonu, 2014); https://doi.org/10.5281/zenodo.375814

  • Coinsmart. Europa İçindeki En İyi Bitcoin-Börse
    Kaynak: https://www.nature.com/articles/s41565-021-00911-6

    spot_img

    En Son İstihbarat

    spot_img