Zephyrnet Logo

Towards single-species selectivity of membranes with subnanometre pores

Date:

  • 1.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  • 2.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 1–15 (2016).

    Google Scholar 

  • 3.

    Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    CAS  Google Scholar 

  • 4.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, 1138–1148 (2017).

    Google Scholar 

  • 5.

    Werber, J. R. & Elimelech, M. Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018).

    Google Scholar 

  • 6.

    Werber, J. R., Porter, C. J. & Elimelech, M. A path to ultraselectivity: Support layer properties to maximize performance of biomimetic desalination membranes. Environ. Sci. Technol. 52, 10737–10747 (2018).

    CAS  Google Scholar 

  • 7.

    Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).

    CAS  Google Scholar 

  • 8.

    Homaeigohar, S. & Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).

    CAS  Google Scholar 

  • 9.

    Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: A review. J. Memb. Sci. 555, 429–454 (2018).

    CAS  Google Scholar 

  • 10.

    Zhang, H. et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4, eaaq0066 (2018).

    Google Scholar 

  • 11.

    Li, X. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 10, 2490 (2019).

    Google Scholar 

  • 12.

    Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    CAS  Google Scholar 

  • 13.

    Sadeghi, I., Kaner, P. & Asatekin, A. Controlling and expanding the selectivity of filtration membranes. Chem. Mater. 21, 7328–7354 (2018).

    Google Scholar 

  • 14.

    Nghiem, L. D. et al. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Memb. Sci. 281, 7–41 (2006).

    CAS  Google Scholar 

  • 15.

    Thiruraman, J. P. et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett. 18, 1651–1659 (2018).

    CAS  Google Scholar 

  • 16.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    CAS  Google Scholar 

  • 17.

    Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. The state of desalination and brine production: A global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    CAS  Google Scholar 

  • 18.

    Campione, A. et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 434, 121–160 (2018).

    CAS  Google Scholar 

  • 19.

    Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective. J. Phys. Chem. C. 123, 21309–21326 (2019).

    CAS  Google Scholar 

  • 20.

    Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Memb. Sci. 107, 1–21 (1995).

    CAS  Google Scholar 

  • 21.

    Mukherjee, P. & Sengupta, A. K. Ion exchange selectivity as a surrogate indicator of relative permeability of ions in reverse osmosis processes. Environ. Sci. Technol. 37, 1432–1440 (2003).

    CAS  Google Scholar 

  • 22.

    Epsztein, R., Cheng, W., Shaulsky, E., Dizge, N. & Elimelech, M. Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. J. Memb. Sci. 548, 694–701 (2017).

    Google Scholar 

  • 23.

    Sata, T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis – Effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J. Memb. Sci. 167, 1–31 (2000).

    CAS  Google Scholar 

  • 24.

    Cheng, W. et al. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Memb. Sci. 559, 98–106 (2018).

    CAS  Google Scholar 

  • 25.

    Collins, F. C. Activation energy of the Eyring theory of liquid viscosity and diffusion. J. Chem. Phys. 26, 398–400 (1957).

    CAS  Google Scholar 

  • 26.

    Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).

    CAS  Google Scholar 

  • 27.

    Ewell, R. H. & Eyring, H. Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726–736 (1937).

    CAS  Google Scholar 

  • 28.

    Zwolinski, B. J., Eyring, H. & Reese, C. E. Diffusion and membrane permeability. J. Phys. Colloid Chem. 53, 1426–1453 (1949).

    CAS  Google Scholar 

  • 29.

    Castillo, L. F. Del, Mason, E. A. & Viehland, L. A. Energy-barrier models for membrane transport. Biophys. Chem. 9, 111–120 (1979).

    Google Scholar 

  • 30.

    Sogami, M. et al. Application of the transition state theory to water transport across cell membranes. Biochim. Biophys. Acta – Biomembr. 1511, 42–48 (2001).

    CAS  Google Scholar 

  • 31.

    Babu, J. S. & Sathian, S. P. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes. Phys. Rev. E 85, 051205 (2012).

    Google Scholar 

  • 32.

    Epsztein, R., Qin, M., Shaulsky, E. & Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. J. Memb. Sci. 580, 316–326 (2019).

    CAS  Google Scholar 

  • 33.

    Latorre, R. & Miller, C. Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30 (1983).

    CAS  Google Scholar 

  • 34.

    Wang, J. H., Robinson, C. V. & Edelman, I. S. Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H2, H3 and O18 as tracers. J. Am. Chem. Soc. 75, 466–470 (1953).

    Google Scholar 

  • 35.

    Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Google Scholar 

  • 36.

    Pati, R. & Karna, S. P. Current switching by conformational change in a π-σ-π molecular wire. Phys. Rev. B – Condens. Matter Mater. Phys. 69, 155419 (2004).

    Google Scholar 

  • 37.

    Weigelt, S. et al. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nat. Mater. 5, 112–117 (2006).

    CAS  Google Scholar 

  • 38.

    Daasbjerg, K. et al. Evidence for large inner reorganization energies in the reduction of diaryl disulfides: Toward a mechanistic link between concerted and stepwise dissociative electron transfers? J. Am. Chem. Soc. 121, 1750–1751 (1999).

    CAS  Google Scholar 

  • 39.

    Pophristic, V., Goodman, L. & Guchhait, N. Role of lone-pairs in internal rotation barriers. J. Phys. Chem. A 101, 4290–4297 (1997).

    CAS  Google Scholar 

  • 40.

    Sharma, R. R., Agrawal, R. & Chellam, S. Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: Pore size distributions and transport parameters. J. Memb. Sci. 223, 69–87 (2003).

    CAS  Google Scholar 

  • 41.

    Luo, J. & Wan, Y. Effects of pH and salt on nanofiltration-a critical review. J. Membr. Sci. 438, 18–28 (2013).

    CAS  Google Scholar 

  • 42.

    Nghiem, L. D., Schäfer, A. I. & Elimelech, M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Memb. Sci. 286, 52–59 (2006).

    CAS  Google Scholar 

  • 43.

    Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M. & Elimelech, M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018).

    CAS  Google Scholar 

  • 44.

    Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    CAS  Google Scholar 

  • 45.

    Marcus, Y. Thermodynamics of solvation of ions. J. Chem. Soc. Faraday Trans. 87, 2995–2999 (1991).

    CAS  Google Scholar 

  • 46.

    Ben-Amotz, D., Raineri, F. O. & Stell, G. Solvation thermodynamics: Theory and applications. J. Phys. Chem. B 109, 6866–6878 (2005).

    CAS  Google Scholar 

  • 47.

    Sahu, S., Di Ventra, M. & Zwolak, M. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores. Nano Lett. 17, 4719–4724 (2017).

    CAS  Google Scholar 

  • 48.

    Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. Quantifying barriers to monovalent anion transport in narrow non-polar pores. Phys. Chem. Chem. Phys. 14, 11633–11638 (2012).

    CAS  Google Scholar 

  • 49.

    Zwolak, M., Wilson, J. & Di Ventra, M. Dehydration and ionic conductance quantization in nanopores. J. Phys. Condens. Matter 22, 454126 (2010).

    Google Scholar 

  • 50.

    Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    CAS  Google Scholar 

  • 51.

    Sata, T., Yamaguchi, T. & Matsusaki, K. Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions. J. Phys. Chem. 99, 12875–12882 (1995).

    CAS  Google Scholar 

  • 52.

    Hannesschlaeger, C., Horner, A. & Pohl, P. Intrinsic membrane permeability to small molecules. Chem. Rev. 119, 5922–5953 (2019).

    CAS  Google Scholar 

  • 53.

    De Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N. & van Veek, W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 233, 610–618 (1971).

    Google Scholar 

  • 54.

    Noy, A. Kinetic model of gas transport in carbon nanotube channels. J. Phys. Chem. C. 117, 7656–7660 (2013).

    CAS  Google Scholar 

  • 55.

    Boo, C. et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 52, 7279–7288 (2018).

    CAS  Google Scholar 

  • 56.

    DuChanois, R. M., Epsztein, R., Trivedi, J. A. & Elimelech, M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. J. Memb. Sci. 581, 413–420 (2019).

    CAS  Google Scholar 

  • 57.

    Farrokhzad, H., Darvishmanesh, S., Genduso, G., Van Gerven, T. & Van Der Bruggen, B. Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim. Acta 158, 64–72 (2015).

    CAS  Google Scholar 

  • 58.

    Vaselbehagh, M., Karkhanechi, H., Takagi, R. & Matsuyama, H. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis – experimental verification of theoretical predictions. J. Memb. Sci. 490, 301–310 (2015).

    CAS  Google Scholar 

  • 59.

    Epsztein, R., Nir, O., Lahav, O. & Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J. 279, 372–378 (2015).

    CAS  Google Scholar 

  • 60.

    Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    CAS  Google Scholar 

  • 61.

    Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  Google Scholar 

  • 62.

    Morais-Cabral, Ä. H., Kaufman, A. & Mackinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Google Scholar 

  • 63.

    Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    CAS  Google Scholar 

  • 64.

    Barboiu, M. Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Acc. Chem. Res. 51, 2711–2718 (2018).

    CAS  Google Scholar 

  • 65.

    Gilles, A. & Barboiu, M. Highly selective artificial K+ channels: An example of selectivity-induced transmembrane potential. J. Am. Chem. Soc. 138, 426–432 (2016).

    CAS  Google Scholar 

  • 66.

    Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes (McGraw-Hill Book Company, 1941).

  • 67.

    Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).

    CAS  Google Scholar 

  • 68.

    Kopec, W. et al. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat. Chem. 10, 813–820 (2018).

    CAS  Google Scholar 

  • 69.

    Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    CAS  Google Scholar 

  • 70.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    CAS  Google Scholar 

  • 71.

    Li, W., Wu, W. & Li, Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano 12, 9309–9317 (2018).

    CAS  Google Scholar 

  • 72.

    Simon, G. P. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Google Scholar 

  • 73.

    Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 1–4 (2017).

    Google Scholar 

  • 74.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Google Scholar 

  • 75.

    Choi, W. et al. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 4, 2397 (2013).

    Google Scholar 

  • 76.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  • 77.

    Ali, S., Rehman, S. A. U., Luan, H. Y., Farid, M. U. & Huang, H. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci. Total Environ. 646, 1126–1139 (2019).

    CAS  Google Scholar 

  • 78.

    Li, F., Li, L., Liao, X. & Wang, Y. Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. J. Memb. Sci. 385–386, 1–9 (2011).

    Google Scholar 

  • 79.

    Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    CAS  Google Scholar 

  • 80.

    Spichiger-keller, U. E. Ionophores, ligands and reactands. Anal. Chim. Acta 400, 65–72 (1999).

    CAS  Google Scholar 

  • 81.

    Ovchinnikov, Y. A. Physico‐chemical basis of ion transport through biological membranes: ionophores and ion channels. Eur. J. Biochem. 94, 321–336 (1979).

    CAS  Google Scholar 

  • 82.

    Ammann, D. et al. Preparation of neutral ionophores for alkali and alkaline earth metal cations and their application in ion selective membrane electrodes. Helv. Chem. Acta 58, 1535–1548 (1975).

    CAS  Google Scholar 

  • 83.

    Bowman-James, K. Alfred Werner revisited: The coordination chemistry of anions. Acc. Chem. Res. 38, 671–678 (2005).

    CAS  Google Scholar 

  • 84.

    Kang, S. O., Begum, R. A. & Bowman-James, K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed. 45, 7882–7894 (2006).

    CAS  Google Scholar 

  • 85.

    Prets, E., Badertscher, M., Welti, M., Morf, W. E. & Simon, W. Design features of ionophores for ion selective electrodes. Pure Appl. Chem. 60, 567–574 (1988).

    Google Scholar 

  • 86.

    Almeida, M. I. G. S., Cattrall, R. W. & Kolev, S. D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Memb. Sci. 415–416, 9–23 (2012).

    Google Scholar 

  • 87.

    Sheng, C., Wijeratne, S., Cheng, C., Baker, G. L. & Bruening, M. L. Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. J. Memb. Sci. 459, 169–176 (2014).

    CAS  Google Scholar 

  • 88.

    Toutianoush, A., El-Hashani, A., Schnepf, J. & Tieke, B. Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions. Appl. Surf. Sci. 246, 430–436 (2005).

    CAS  Google Scholar 

  • 89.

    Acar, E. T., Buchsbaum, S. F., Combs, C., Fornasiero, F. & Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 5, eaav2568 (2019).

    CAS  Google Scholar 

  • 90.

    Fang, A., Kroenlein, K., Riccardi, D. & Smolyanitsky, A. Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nat. Mater. 18, 76–81 (2019).

    CAS  Google Scholar 

  • 91.

    Richards, L. A., Richards, B. S., Corry, B. & Schäfer, A. I. Experimental energy barriers to anions transporting through nanofiltration membranes. Environ. Sci. Technol. 47, 1968–1976 (2013).

    CAS  Google Scholar 

  • 92.

    Sigurdardottir, S. B., DuChanois, R. M., Epsztein, R., Pinelo, M. & Elimelech, M. Energy barriers to anion transport in nanofiltration membranes: role of intra-pore diffusion. J. Memb. Sci. 603, 117921 (2020).

    CAS  Google Scholar 

  • 93.

    Khavrutskii, I. V., Gorfe, A. A., Lu, B. & McCammon, J. A. Free energy for the permeation of Na+ and CI- ions and their Ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic fourier beads. J. Am. Chem. Soc. 131, 1706–1716 (2009).

    CAS  Google Scholar 

  • 94.

    Gao, P., Hunter, A., Summe, M. J. & Phillip, W. A. A method for the efficient fabrication of multifunctional mosaic membranes by inkjet printing. ACS Appl. Mater. Interfaces 8, 19772–19779 (2016).

    CAS  Google Scholar 

  • 95.

    Rajesh, S., Yan, Y., Chang, H. C., Gao, H. & Phillip, W. A. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations. ACS Nano 8, 12338–12345 (2014).

    CAS  Google Scholar 

  • 96.

    Malmir, H. et al. Induced charge anisotropy: A hidden variable affecting ion transport through membranes. Matter 2, 735–750 (2019).

    Google Scholar 

  • 97.

    Haji-Akbari, A. Forward-flux sampling with jumpy order parameters. J. Chem. Phys. 149, 072303 (2018).

    Google Scholar 

  • 98.

    Tu, K. L., Nghiem, L. D. & Chivas, A. R. Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes. Chem. Eng. J. 168, 700–706 (2011).

    CAS  Google Scholar 

  • 99.

    Somrani, A., Hamzaoui, A. H. & Pontie, M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317, 184–192 (2013).

    CAS  Google Scholar 

  • 100.

    Saraf, A., Johnson, K. & Lind, M. L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis. Desalination 333, 1–9 (2014).

    CAS  Google Scholar 

  • 101.

    Nicolini, J. V., Borges, C. P. & Ferraz, H. C. Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Sep. Purif. Technol. 171, 238–247 (2016).

    CAS  Google Scholar 

  • 102.

    Qi, S. et al. Polymersomes-based high-performance reverse osmosis membrane for desalination. J. Memb. Sci. 555, 177–184 (2018).

    CAS  Google Scholar 

  • 103.

    Richards, L. A., Vuachère, M. & Schäfer, A. I. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261, 331–337 (2010).

    CAS  Google Scholar 

  • 104.

    Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007).

    CAS  Google Scholar 

  • 105.

    Hong, S. U., Malaisamy, R. & Bruening, M. L. Optimization of flux and selectivity in Cl-/SO42- separations with multilayer polyelectrolyte membranes. J. Membr. Sci. 283, 366–372 (2006).

    CAS  Google Scholar 

  • 106.

    Mukherjee, D., Kulkarni, A. & Gill, W. N. Flux enhancement of reverse osmosis membranes by chemical surface modification. J. Memb. Sci. 97, 231–249 (1994).

    CAS  Google Scholar 

  • 107.

    Harrison, C. J., Le Gouellec, Y. A., Cheng, R. C. & Childress, A. E. Bench-scale testing of nanofiltration for seawater desalination. J. Environ. Eng. 133, 1004–1014 (2007).

    CAS  Google Scholar 

  • 108.

    Giagnorio, M. et al. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection. Environ. Sci. Pollut. Res. 25, 25294–25305 (2018).

    CAS  Google Scholar 

  • 109.

    Redondo, J. A. & Frank, K. F. Sea water applications with FILMTEC reverse osmosis membranes from small to large plants in 10 years. Desalination 82, 31–49 (1991).

    CAS  Google Scholar 

  • 110.

    Arena, J. T., McCloskey, B., Freeman, B. D. & McCutcheon, J. R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Memb. Sci. 375, 55–62 (2011).

    CAS  Google Scholar 

  • 111.

    Al-Zoubi, H., Hilal, N., Darwish, N. A. & Mohammad, A. W. Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model. Desalination 206, 42–60 (2007).

    CAS  Google Scholar 

  • 112.

    Widjaya, A., Hoang, T., Stevens, G. W. & Kentish, S. E. A comparison of commercial reverse osmosis membrane characteristics and performance under alginate fouling conditions. Sep. Purif. Technol. 89, 270–281 (2012).

    CAS  Google Scholar 

  • 113.

    Malaisamy, R., Talla-Nwafo, A. & Jones, K. L. Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions. Sep. Purif. Technol. 77, 367–374 (2011).

    CAS  Google Scholar 

  • 114.

    Wang, K. Y., Chung, T. S. & Qin, J. J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Memb. Sci. 300, 6–12 (2007).

    CAS  Google Scholar 

  • 115.

    Freger, V., Arnot, T. C. & Howell, J. A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration. J. Memb. Sci. 178, 185–193 (2000).

    CAS  Google Scholar 

  • 116.

    Nilsson, M., Trägårdh, G. & Östergren, K. The influence of sodium chloride on mass transfer in a polyamide nanofiltration membrane at elevated temperatures. J. Memb. Sci. 280, 928–936 (2006).

    CAS  Google Scholar 

  • 117.

    Tsuru, T., Izumi, S., Yoshioka, T. & Asaeda, M. Temperature effect on transport performance by inorganic nanofiltration membranes. AIChE J. 46, 565–574 (2000).

    CAS  Google Scholar 

  • 118.

    Tsuru, T., Ogawa, K., Kanezashi, M. & Yoshioka, T. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures. Langmuir 26, 10897–10905 (2010).

    CAS  Google Scholar 

  • 119.

    Sharma, R. R. & Chellam, S. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. J. Colloid Interface Sci. 298, 327–340 (2006).

    CAS  Google Scholar 

  • 120.

    Snow, M. J. H., de Winter, D., Buckingham, R., Campbell, J. & Wagner, J. New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration. Desalination 105, 57–61 (1996).

    CAS  Google Scholar 

  • 121.

    Saltonstall, C. W. Jr Practical aspects of sea water desalination by reverse osmosis. Desalination 18, 315–320 (1976).

    CAS  Google Scholar 

  • 122.

    Li, L., Dong, J. & Nenoff, T. M. Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis. Sep. Purif. Technol. 53, 42–48 (2007).

    CAS  Google Scholar 

  • 123.

    Mehdizadeh, H., Dickson, J. M. & Eriksson, P. K. Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Ind. Eng. Chem. Res. 28, 814–824 (1989).

    CAS  Google Scholar 

  • 124.

    Connell, P. J. & Dickson, J. M. Modeling reverse osmosis separations with strong solute‐membrane affinity at different temperatures using the finely porous model. J. Appl. Polym. Sci. 35, 1129–1148 (1988).

    CAS  Google Scholar 

  • 125.

    Chen, J.-Y., Nomura, H. & Pusch, W. Temperature dependence of membrane transport parameters in hyperfiltration. Desalination 46, 437–446 (1983).

    CAS  Google Scholar 

  • 126.

    Lonsdale, H. K., Merten, U. & Riley, R. L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 9, 1341–1362 (1965).

    CAS  Google Scholar 

  • 127.

    Reid, C. E. & Kuppers, J. R. Physical characteristics of osmotic membranes of organic polymers. J. Appl. Polym. Sci. 2, 264–272 (1959).

    CAS  Google Scholar 

  • 128.

    Gary-Bobo, C. M. Effect of geometrical and chemical constraints on water flux across artificial membranes. J. Gen. Physiol. 57, 610–622 (2004).

    Google Scholar 

  • 129.

    Gary-Bobo, C. M. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes. J. Gen. Physiol. 54, 369–382 (2004).

    Google Scholar 

  • 130.

    Badessa, T. & Shaposhnik, V. The electrodialysis of electrolyte solutions of multi-charged cations. J. Memb. Sci. 498, 86–93 (2016).

    CAS  Google Scholar 

  • 131.

    Freger, V. et al. Diffusion of water and ethanol in ion-exchange membranes: Limits of the geometric approach. J. Memb. Sci. 160, 213–224 (1999).

    CAS  Google Scholar 

  • 132.

    Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).

    CAS  Google Scholar 

  • 133.

    Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999).

    CAS  Google Scholar 

  • 134.

    Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    CAS  Google Scholar 

  • 135.

    Song, C. & Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 113, 7642–7649 (2009).

    CAS  Google Scholar 

  • 136.

    Williams, C. D. & Carbone, P. Selective removal of technetium from water using graphene oxide membranes. Environ. Sci. Technol. 50, 3875–3881 (2016).

    CAS  Google Scholar 

  • 137.

    Sahu, S. & Zwolak, M. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. Nanoscale 9, 11424–11428 (2017).

    CAS  Google Scholar 

  • 138.

    Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).

    CAS  Google Scholar 

  • 139.

    Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).

    Google Scholar 

  • 140.

    Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889).

    Google Scholar 

  • 141.

    Eyring, H. The theory of absolute reaction rates. Trans. Faraday Soc. 34, 41–48 (1938).

    CAS  Google Scholar 

  • 142.

    Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    CAS  Google Scholar 

  • 143.

    Hanggi, P. 50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).

    Google Scholar 

  • 144.

    Wynne-Jones, W. F. K. & Eyring, H. The absolute rate of reactions in condensed phases. J. Chem. Phys. 3, 492–502 (1935).

    CAS  Google Scholar 

  • 145.

    Garrett, B. C. Variational transition state theory. Ann. Rev. Phys. Chem. 35, 159–189 (1984).

    Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-0713-6

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?