Zephyrnet Logo

Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor

Date:

  • 1.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar

  • 2.

    Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    CAS  Article  Google Scholar

  • 3.

    Du, Z. Z., Wang, C. M., Lu, H. Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    CAS  Article  Google Scholar

  • 4.

    Du Z. Z., Wang C. M. X., Li S., Lu H. Z., Xie X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, (2019).

  • 5.

    Zhou, B. T., Zhang, C.-P. & Law, K. Highly tunable nonlinear Hall effects induced by spin–orbit couplings in strained polar transition-metal dichalcogenides. Phys. Rev. Appl. 13, 024053 (2020).

    CAS  Article  Google Scholar

  • 6.

    Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    CAS  Article  Google Scholar

  • 7.

    Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  Article  Google Scholar

  • 8.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar

  • 9.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    CAS  Article  Google Scholar

  • 10.

    Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    Article  Google Scholar

  • 11.

    Klitzing, K. V. et al. Method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980).

    Article  Google Scholar

  • 12.

    Cage, M. E. et al. The Quantum Hall Effect (Springer, 2012).

  • 13.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar

  • 14.

    Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar

  • 15.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    CAS  Article  Google Scholar

  • 16.

    Sung, J. H. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017).

    CAS  Article  Google Scholar

  • 17.

    Song, Q. et al. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016).

    Article  Google Scholar

  • 18.

    Tang, S. et al. Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy. APL Mater. 6, 026601 (2018).

    Article  Google Scholar

  • 19.

    Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    CAS  Article  Google Scholar

  • 20.

    Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  Article  Google Scholar

  • 21.

    Gao, Y., Yang, S. A. & Niu, Q. Geometrical effects in orbital magnetic susceptibility. Phys. Rev. B 91, 214405 (2015).

    Article  Google Scholar

  • 22.

    Gao, Y., Yang, S. A. & Niu, Q. Intrinsic relative magnetoconductivity of nonmagnetic metals. Phys. Rev. B 95, 165135 (2017).

    Article  Google Scholar

  • 23.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar

  • 24.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar

  • 25.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).

    CAS  Article  Google Scholar

  • 26.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar

  • 27.

    Marzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    CAS  Article  Google Scholar

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://www.nature.com/articles/s41565-021-00917-0

spot_img

Latest Intelligence

spot_img